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1. Introduction7

This is a short overview of an experimental library of Mathematics formalized in the8

Coq proof assistant using the univalent interpretation of the underlying type theory of9

Coq. I started to work on this library in February 2010 in order to gain experience with10

formalization of Mathematics in a constructive type theory based on the intuition gained11

from the univalent models (see Kapulkin et al. 2012).12

Univalent models interpret types not as sets but as homotopy types. Their use in13

formalization of general Mathematics (as opposed to just homotopy theory) is based on14

the following consideration. First note that we can stratify mathematical constructions15

by their “level.’ There is element-level Mathematics – the study of element-level objects16

such as numbers, polynomials or various series. Then one has set level Mathematics –17

the study of sets with structures such as groups, rings etc., which are invariant under18

isomorphisms. The next level is traditionally called category-level, but this is misleading.19

A collection of set-level objects naturally forms a groupoid since only isomorphisms are20

intrinsic to the objects one considers, while more general morphisms can often be defined21

in a variety of ways. Thus the next level after the set level is the groupoid-level – the study22

of properties of groupoids with structures which are invariant under the equivalences of23

groupoids. From this perspective a category is an example of a groupoid with structure24

which is rather similar to a partial ordering on a set.25

Extending this stratification we may further consider 2-groupoids with structures, n-26

groupoids with structures and ∞-groupoids with structures. Thus a proper language for27

formalization of Mathematics should allow one to directly build and study groupoids of28

various levels and structures on them.29

A major advantage of this point of view is that unlike ∞-categories, which can be30

defined in many substantially different ways the world of ∞-groupoids is determined by31

Grothendieck correspondence (see Grothendieck 1997) , which asserts that ∞-groupoids32

are ‘the same’ as homotopy types. Combining this correspondence with the previous33

considerations we come to the view that not only homotopy theory but the whole of34

Mathematics is the study of structures on homotopy types.35

† Work on this paper was supported by NSF grant 1100938.
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The univalent models of constructive type theories enable one to use such type theories36

to reason directly about homotopy types with structures. This is the main idea of the37

univalent foundations of Mathematics – to use constructive type theory together with the38

intuition coming from its univalent homotopy-theoretic semantics to write and to prove39

theorems about mathematical objects of all ‘levels’ formally.40

Univalent Foundations can be seen as a realization of the vision of Michael Makkai41

whose paper Makkai (1995) was very important for me in my search for a formal language42

for contemporary Mathematics.43

At the moment, there are two actively supported proof assistants based on constructive44

type theories – Coq and Agda. Both proof assistants continue to be developed by45

teams which consist mainly of computer scientists who are actively experimenting with46

new features which are introduced into the systems without a formal verification of47

their consistency. Of these two systems Coq has been in development longer and is more48

conservative. To further minimize the possibility of accidentally using a feature which may49

later be found to be inconsistent the library described here was written using a restricted50

subset of the type theory underlying Coq. For another approach in Coq, we suggest the51

reader to look at the HoTT project library at https://github.com/HoTT/HoTT. The52

version of the library which this text refers to was checked to compile with a patched53

version of Coq 8.4pl3. For instructions on how to get this version of Coq and how to54

patch it, see the file Coq patch/README.55

The type theory of Coq is, roughly speaking, a combination of three components. The56

first component is a version of the Thierry Coquand’s calculus of constructions (CC)57

(see Coquand and Huet 1988). This is a type system with two universes, Prop and Type,58

dependent products and abstraction/application constructions satisfying β-reduction. The59

second component is a universe management system which replaces two universes of60

CC with an infinite hierarchy of universes which is due to Z. Luo (see Luo 1994). The61

third component is a machinery for creating strictly positive ‘inductive types’ described in62

Paulin-Mohring (1993).63

In our library, we use a small subset of a modified version of the Coq type system. The64

modifications are introduced through a patch contained in the subdirectory Coq patch.65

Some information on the content of this patch and on its history can be found in the66

README file of that subdirectory.67

The main modification turns off the universe consistency verification system of Coq.68

This, of course, makes the type system inconsistent (any type, including the empty type, can69

be shown to have an object). The proper solution is instead to use universe polymorphism70

together with either resizing rules (see Voevodsky 2011) or higher inductive types (see71

Univalent Foundations Project 2013). However, these modifications are highly non-trivial72

and for the experimental purposes of the current library it seemed reasonable to rely on73

careful tracing of universe levels ‘by hand.’ This issue becomes important only starting74

with the file hProp.v. The first major file of the library, uu0.v, can be compiled without75

the patch.76

The main restriction which we impose on the constructions of the library concerns the77

use of the inductive types machinery of Coq. In a rather ingenious way this machinery78

is normally used in Coq both to define standard ingredients of constructive type theories79
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such as identity types, dependent sums, the one point type, disjoint unions, the empty80

type, Booleans and natural numbers and also to define a multitude of other constructs81

such as, for example, inequalities between natural numbers. In the current library we use82

this machinery only to introduce the standard constructions listed above. No further use83

of inductive types is made except in one place in the file hnat.v where we show that our84

approach to comparisons between natural numbers is equivalent to the approach taken85

in the standard library of Coq.86

Another restriction is that we do not use the universe Prop. Associated with this87

universe there is a ‘singleton elimination’ rule which is inconsistent with the univalent88

model. To avoid accidental use of this rule by tactics the patch file modifies the way the89

universe level of inductive constructions (most notably of identity types) is computed.90

During the compilation of the first file of the library, uuu.v, the compiler should display91

‘paths 0 0:UUU.’ Without proper application of the patch the compiler would display92

‘paths 0 0:Prop.’93

The distribution of Coq includes an extensive ‘standard library.’ Our library uses only94

the first and most basic subdivision of the Coq’s standard library, namely Coq.Init. In95

fact some of the files of the standard library may take very long to compile with the96

‘-no-sharing’ option which is introduced by the patch and which we use to overcome a97

bug in Coq’s normalization algorithm. See the file Coq patch/README for instructions of98

how to compile Coq without compiling most of the standard library.99

2. File uuu.v100

The first several lines of uuu.v introduce new notations for some of the constructions that101

are defined in Coq’s standard library. The part of the library where these constructions102

are introduced is located in ‘coqlocation/theories/Init/’ where ‘coqlocation’ is the103

directory where the Coq distribution is. Files of this part of the library are automatically104

loaded by Coq while to load other parts of the standard library (located in other105

subdirectories of ‘coqlocation/theories/’) requires an explicit instruction.106

In the first new definition in ‘uuu.v’ we introduce the version of dependent sum used107

in our library. It is called ‘total2’ due on the one hand to its semantic meaning as the108

total space of a fibration and on the other to its function as a generic record of length109

2.† Several important features of Coq formalization can be illustrated with this definition110

and the following definitions of ‘pr1’ and ‘pr2.’111

The first parameter of the construction, the type ‘T,’ is shown in the definition in braces.112

This means that this is an implicit parameter, i.e., when ‘total2’ is used one writes ‘total2113

P’ instead of ‘total2 T P.’ Types of expressions are computable in Coq from expressions114

themselves and since the type of ‘P’ must be ‘T->Type’ the system can infer ‘T’ from ‘P’.115

The second parameter ‘P’ is of the type ‘T->Type.’ Here ‘Type’ is a generic notation116

which Coq uses for universes. The universe management in Coq is rather baroque and117

well hidden from user control so for simplicity one may think that ‘Type’ is synonymous118

† In the first version of the library there was also ‘total3’ corresponding to the generic record of length 3.
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with the name of some fixed universe ‘UU.’ A function ‘T->UU’ is intuitively a way to assign119

to any object of ‘T’ an object of ‘UU,’ i.e., a type which is contained in ‘UU.’ In other words,120

it is a family of types in ‘UU’ parametrized by ‘T.’ The semantics of this is as follows. If we121

use the univalent model with values in the category of simplicial sets then ‘T’ is mapped122

to a (Kan) simplicial set and ‘UU’ is mapped to the base of the universal Kan fibration123

which classifies Kan fibrations whose fibres belong to ‘UU.’ Thus ‘P’ corresponds to a Kan Q2124
fibration over ‘T’ and ‘total2 P’ is the total space of this fibration.125

In the informal semantics with values in ∞-groupoids ‘T’ is mapped to an ∞-groupoid126

while ‘UU’ is mapped to the ∞-groupoid of ∞-groupoids in ‘UU’ and their equivalences.127

The function ‘P’ then can be viewed as a functor and ‘total2 P’ is the ∞-groupoid of128

pairs (x, y) where x is an object of ‘T’ and y an object of P (x).129

The next definition is that of “pr1.’ It takes three parameters and returns an object130

of ‘T’ where ‘T’ is the first parameter. In general, when one has a definition of some131

‘C’ in Coq with parameters ‘x1 x2... xn’ one can write not only ‘C a1... an’ but132

also partially applied versions such as ‘C a1... a(n-1)’ or just ‘C.’ The type of such a133

partially applied definition will be a function type or more generally a dependent product134

type.135

In the case of ‘pr1’ the first two parameters are implicit and supposed to be inferred136

from the third. If one wants to use a partially applied version of ‘pr1’ one has137

to provide the first two parameters explicitly. To tell Coq that a definition will be138

used as if all its parameters were explicit one uses prefix ‘@’ and writes, for example,139

‘@pr1 T P.’ The type of this expression is the function type ‘(total2 T P) -> T’ and140

its semantical meaning is the projection from the total space of a fibration to its141

base.142

An extremely important feature of dependent type theories which is unavailable in the143

theories without dependent types and which at the first may seem confusing is that we144

also have ‘@pr2 T P.’ Obviously not any fibration is trivial so we do not normally have145

a projection from the total space to a fibre as a function. However we always have it as a146

dependent function. By writing something like147

Variable T:Type.148

Variable P:T -> Type.149

Check ( @pr2 T P ).150

one will see that the type of ‘@pr2 T P’ is ‘forall tp:total2 P, P (pr1 tp).’ The151

semantic meaning of the later expression is as follows. ‘forall’ is the name of the152

dependent product construction in Coq. Its general format is ‘forall x:T1, T2’ where153

‘T1’ is a type expression and ‘T2’ is a type expression which may have a parameter ‘x’ of154

type ‘T1.’ Such an expression with a parameter semantically is the same as a function ‘T1155

-> UU,’ i.e., the ‘forall’ construction has essentially the same parameters as ‘total2’ - a156

type and a family of types parametrized by this type. As was explained above such a pair157

corresponds in the univalent model in simplicial sets to a Kan fibration. The type ‘forall158

x:T1, T2’ is the (Kan) simplicial set of sections of this fibration.159

If ‘T2’ does not actually depend on ‘x’ then one abbreviates the expression ‘forall160

x:T1, T2’ to ‘T1 -> T2.’ Semantically it corresponds to the case of a constant fibration161

whose sections are just functions from the base ‘T1’ to the fibre ‘T2.’162
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Returning to the case of ‘@pr2 T P’ we see that semantically it is a section of the163

fibration over ‘@total2 T P’ whose fibre over ‘tp’ is the fibre of ‘P’ over ‘pr1 tp.’ In164

mathematical notation, if our fibration is p : E → B then ‘@pr2 T P’ is the diagonal165

section of E ×B E over E.166

3. File uu0.v167

This file contains the results of the library which are applicable to all types.168

The first three lines of the file are also repeated with some obvious changes in all the169

rest of the files of the library. These are commands to the Coq program.170

The first one tells Coq not to do a certain type of steps automatically at the start of171

every proof but to leave the choice of whether or not to do these steps to the user.172

The second and the third lines address the mechanism which loads other library files.173

They are discussed in more detail in the appendix.174

Let me now use some of the first proofs given in ‘uu0.v’ to illustrate how the proof175

system of Coq works. Note first that a line such as176

‘Definition name1:expr1.’177

tells Coq that a constant called ‘name1’ of type ‘expr1’ will be provided by the user. In178

the case of ‘Definition’ there are two ways to provide the value of this constant. One179

can write180

‘Definition name1:expr1:= expr2.’181

in that case ‘expr2’ should be an expression which has type ‘expr1’ which will be the182

value of the constant ‘name1.’ Alternatively, one can write ‘Proof.’ after ‘Definition183

name1:expr1.’ and then use various commands of Coq proof mode to construct the184

value of the constant. When Coq says ‘Proof completed’ in the ‘response’ window one185

writes either ‘Qed.’ or ‘Defined.’ The difference between the two is that when ‘Qed.’ is186

used the actual structure of the constructed expression becomes hidden (opaque) while187

when ‘Defined.’ is used the structure remains accessible.188

The keywords ‘Theorem,’ ‘Lemma’ and ‘Proposition’ are strictly equivalent and are189

equivalent to ‘Definition’ except that one must use the proof mode to provide the value190

of the corresponding constant, i.e., one cannot simply provide the value after ‘:=.’191

More generally Coq can be told that a constant with the name ‘name1’ is going to be192

introduced by a line of the form193

‘Definition name1 ( x1:texpr1 )... ( xn:texprn ):expr.’194

which is essentially equivalent to195

‘Definition name1:forall x1:texpr1,..., forall xn:texprn, expr’196

with the only difference being that the first form allows one to say that some of the197

parameters will be implicit by using curly brackets.198

The first proof of the library is that of ‘Definition fromempty.’ The sentence which199

starts with the word ‘Definition’ tells Coq that a constant with the name ‘fromempty’200

of type ‘forall X:UU, empty -> X’ will be provided and that the type parameter ‘X’ is201

implicit. The value for this constant is constructed inside the proof mode through the use202

of two tactics ‘intros’ and ‘destruct.’ We will not discuss here how the tactics language203

of Coq is working referring the reader instead to Coq reference manual.204
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Detailed information about the mathematical content of the file uu0.v can be obtained205

from the comments in this file. We will only discuss here a few fundamental constructions206

the meaning of which might not be immediately obvious.207

The first such construction is ‘iscontr T’ where ‘T’ is a type. It introduces the concept208

from which almost everything else is build – the concept of a contractible type. By209

definition, a proof of contractibility of a type ‘T’ is an object of the type ‘iscontr T’.210

There are two ways to argue that this is a ‘correct’ way to define contractibility. The211

first one is to point out that the more complex homotopy-theoretic notions defined with212

the use of this notion of contractibility are proved further in this file to satisfy a large213

number of expected properties.214

Another is to analyse the univalent semantics of this construction. Consider for example215

a univalent model with values in Kan simplicial sets. Then ‘T’ is a simplicial set. A point216

of ‘iscontr T’ is a pair ‘(cntr, s)’ where ‘cntr’ is a point of ‘T’ and ‘s’ is an object217

of ‘forall t:T, paths cntr t.’ The family of types ‘t %→ paths cntr t’ is the paths218

bundle corresponding to the point ‘cntr’ and as explained above ‘s’ is a section of this219

bundle. But the total space of the paths bundle is contractible and if it has a section220

then ‘T’ is a retract of a contractible simplicial set and therefore it is contractible. In221

the opposite direction if ‘T’ is contractible then it is in particular non-empty and we can222

choose a point ‘cntr’ in ‘T.’ Any fibration over a contractible s.s. is trivial and if it has223

a non-empty fibre it has a section. The fibre of the paths fibration defined by ‘cntr’224

over ‘cntr’ is non-empty and therefore it has a section ‘s’ which gives us a point in225

‘iscontr T.’226

The next fundamental definition is the property ‘isweq’ of a function ‘f’ to be227

a (weak) equivalence which is defined as the condition that all (homotopy) fibres228

of ‘f’ are contractible. Along with ‘isweq f’ we introduce ‘weq X Y’ – the type of229

(weak) equivalences from ‘X’ to ‘Y,’ i.e., of pairs ‘(f, is)’ where ‘f:X -> Y’ and230

‘is:isweq f.’231

Theorem ‘gradth’ shows that for a homotopy equivalence, i.e., a quadruple ‘f:X ->232

Y,’ ‘g:Y -> X,’ ‘egf,’ ‘efg’ where ‘egf’ is a homotopy from ‘funcomp f g’ to the identity233

of ‘X’ and ‘efg’ is a homotopy from ‘funcomp g f’ to the identity of ‘Y,’ the function ‘f’234

is a (weak) equivalence. The difference between the notions of a homotopy equivalence235

and a weak equivalence is somewhat subtle but important. Let ‘X’ and ‘Y’ be types236

and ‘homeq X Y’ the type of quadruples ‘(f, (g, (egf, efg))).’ Theorem ‘gradth’ (or237

rather definition ‘weqgradth’) defines a function ‘(homeq X Y) -> (weq X Y).’ Using238

definitions ‘homotweqinvweq’ and ‘homotinvweqweq’ one gets a function ‘(weq X Y) ->239

(homes X Y)’ and it is not difficult to show that these functions make ‘weq X Y’ into240

a retract of ‘homeq X Y.’ In general however this retraction is not an equivalence. The241

reason why ‘weq’ is ‘better’ than ‘homeq’ is related to the difference between properties and242

structures which is explained below.243

Corollary ‘iscontrweqf’ and definition ‘wequnittocontr’ show that a type is contract-244

ible iff it is weakly equivalent to ‘unit’ and in particular that up to weak equivalence there245

is only one contractible type. Corollary ‘isweqmaponpaths’ shows that a weak equivalence246

defines a weak equivalence on ‘paths’ types. Theorems ‘twooutof3a’, ‘twooutof3b’ and247

‘twooutof3c’ establish the 2-out-of-3 property of weak equivalences – if two out of three248
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functions ‘f’, ‘g’, ‘funcomp f g’ are weak equivalences then so is the third. All these results249

are proved using ‘gradth’.250

Then there follows a series of simple results which assert that various natural func-251

tions such as the ones defining associativity and commutativity of direct products or252

distributivity of direct products and binary coproducts are weak equivalences.253

The next tool-box which we introduce contains the type-theoretic versions of the results254

and definitions related to homotopy fibre sequences. Our approach to fibre sequences255

differs somewhat from the usual approaches. A fibre sequence structure ‘fibseqstr’ on256

a triple ‘f:X->Y, g:Y->Z, z:Z’ is defined as a homotopy from ‘funcomp f g’ to the257

constant function ‘fun x : X => z’ such that the associated function ‘ezmap’ from ‘X’ to258

the homotopy fibre ‘hfiber f z’ is a weak equivalence.259

For any fibre sequence structure ‘fs’ on ‘(f,g,z)’ and any object ‘y:Y’ we construct260

a function ‘d1: paths (g y) z -> X’ and the derived fibre sequence structure ‘fibseq1’261

on the triple ‘(d1, f, y).’ This construction can be iterated leading to a type theoretic262

construction of long homotopy exact sequences of fibrations.263

We then investigate three standard situations where fibre sequences arise.264

For any family of types ‘P:Z->UU’ over a type ‘Z’ and an object ‘z:Z’ we construct265

in ‘fibseqpr1’ a fibre sequence structure on the triple ‘(iz,pr1,z)’ where ‘iz’ is the266

inclusion of the fibre ‘P z’ to ‘total2 P’ and ‘pr1’ the projection ‘total2 P -> Z.’267

Applying to it the construction of the derived fibre sequence we get a family of weak268

equivalence ‘ezweq1pr1’ which connect the homotopy fibress of ‘iz’ with paths types on269

‘Z.’270

For a function ‘g:Y->Z’ and an object ‘z:Z’ we define in ‘fibseqg’ the obvious structure271

of a fibre sequence on the triple ‘(hfiberpr1, g, z)’ where ‘hfiberpr1 : hfiber g z272

-> Y’ is the standard function and give explicit descriptions of its first, second and third273

derived sequences.274

Finally we construct a fibre sequence ‘fibseqhf’ of homotopy fibres of a composable275

pair of functions ‘f:X->Y’, ‘g:Y->Z’ for ‘z:Z’ and ‘ye: hfiber g z’ with the underlying276

sequence of morphisms of the form ‘hfiber f (pr1 ye) -> hfiber (comp g f) z ->277

hfiber g z.’278

The next fundamental notion which we introduce is the notion of h-levels. The279

definition ‘isofhlevel n’ uses the type ‘nat’ of natural numbers which is introduced280

in Coq.Init.Datatypes as the inductive type with two constructors ‘O’ of type ‘nat’281

(corresponding to 0) and ‘S’ of type ‘nat -> nat’ (corresponding to the successor function282

n %→ n+ 1). Semantically we have that T is of h-level 0 iff it is contractible and of h-level283

1 + n iff for any x, y in T the paths space paths x y is of h-level n.284

A function ‘f:X->Y’ is said to be of h-level ‘n’ if all its (homotopy) fibres are of h-level285

‘n.’ In particular, a function is of h-level ‘O’ iff it is a weak equivalence.286

Types of h-level 1 are called propositions and we write ‘isaprop’ instead of ‘isofhlevel287

1.’ A homotopy type T is of h-level 1 iff for any x, y ∈ T the paths space between x and288

y is contractible. In the world of classical homotopy types there are only two homotopy289

types with this property – the empty type and the contractible type. If ‘T’ is of h-level290

1 and it is inhabited, i.e., there is an object ‘t:T’ then, as ‘iscontraprop1’ shows ‘T’ is291

contractible. However, there are many non-equivalent types of h-level 1 which have no292
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objects. This discrepancy between the model side and the syntactic side is the univalent293

form of the first Goedel’s incompleteness theorem.294

It is of a fundamental importance for the univalent approach to distinguish types295

which are propositions from more general types. In particular, if one wants to formalize296

univalently non-constructive proofs then one should add the axiom of excluded middle297

to the environment. Adding it in the form ‘forall T:Type, coprod T (T-> empty)’298

would be incompatible with the univalent models (and with the univalence axiom). This299

however does not mean that univalent semantics is incompatible with classical logic – the300

correct univalent formulation of the theorem of excluded middle is ‘forall T:hProp,301

coprod T (T-> empty)’ where ‘hProp := total2 (fun T:Type => isaprop T)’.302

A function between classical homotopy types f : X → Y is of h-level 1 iff it is homotopy303

equivalent to the inclusion of a union of connected components of Y into Y . On the type304

theoretic side we define inclusions as functions of h-level 1 (‘isincl’).305

Inclusions correspond to predicates or properties – functions ‘P:T->UU’ such that ‘forall306

t:T, isaprop (P t).’ Given such ‘P’ we can form the type ‘total2 P’ whose objects307

are pairs ‘(x,p)’ where ‘x:T’ and ‘p:P x.’ By ‘isweqezmappr1’ the homotopy fibre308

of the projection ‘pr1:total2 P -> T’ over ‘x:T’ is weakly equivalent to ‘P x.’ By309

‘isofhlevelweqf’ the h-levels are invariant under weak equivalences. We conclude that310

the projection ‘total2 P -> T’ is a (homotopy) inclusion iff for all ‘x:T’ the type ‘P x’311

is of h-level 1. If the h-level of ‘P x’ is greater than 1 for some ‘x:T’ then ‘P’ defines a312

structure on objects of ‘T.’313

One of the important naming conventions in our library is that any name which starts314

with ‘is’ such as ‘isontr’ or ‘isweq’ corresponds to a property. For further discussion of315

propositions and properties in the univalent approach see Section 4.316

Types of h-level 2 are called sets (or, sometimes, h-sets) and we write ‘isaset’ instead317

of ‘isofhlevel 2.’ A classical homotopy type T is of h-level 2 iff the path space between318

any two points is either empty or contractible – one can easily see that this is equivalent319

to the condition that T is a disjoint union of contractible components, i.e., that it is320

homotopy equivalent to a set. On the type-theoretic side, due to the constructive nature of321

the theory, sets need not be disjoint unions of points. More precisely it is not necessarily322

true that for a set ‘T’ and an object ‘t:T’ there is an equivalence between ‘T’ and ‘coprod323

(compl T t) unit’ where ‘compl T t’ is the complement to ‘t’ in ‘T.’ Types which satisfy324

the later property for all objects are called types with decidable equality (see ‘isdeceq’).325

We show that any type with decidable equality is an h-set in ‘isasetifdeceq’ and use326

it to prove that Booleans (‘isasetbool’) and natural numbers (‘isasetnat’) are h-sets327

but not all h-sets can be proved to have decidable equality. A simple example of an h-set328

which does not have decidable equality is the type of functions ‘nat -> Bool.’ Such329

types as Dedekind reals or p-adic numbers are also h-sets with undecidable equality.330

Most of Mathematics as we know it deals with structures of h-level 2 on types of h-level331

2. For example, a group is a pair ‘(T,S)’ where ‘T’ is an h-set and ‘S’ is an object of the332

h-set of group structures on ‘T’. For further discussion of h-sets see Section 5.333

For higher n the notion of h-level coincides with the well-known notion of n-types up334

to a shift of index by 2, i.e., a type T is of h-level n + 2 iff for any x in T and i > n335

one has πi(T , x) = 0. The best known area of Mathematics whose univalent formalization336
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requires types of h-level 3 is category theory. For a univalent approach to category theory337

see Ahrens et al.338

The file uu0.v contains three axioms – ‘funextempty,’ ‘etacorrection’ and339

‘funextfunax’ and the third one implies both the first and the second. Axioms are340

generally undesirable in constructive type theory even if, as is the case for these three341

axioms, they are semantically justified. The reason is that they tend to break a very342

important property of constructive type theories which is called canonicity. In its simplest343

form canonicity asserts that any object ‘o’ of type ‘nat’ (natural numbers) in the empty344

context which is in the normal form is of the form ‘S ... S O,’ i.e., is a numeral. We will345

come back to this property in the discussion of the files finitesets.v, hz.v and hq.v.346

For example, ‘funextfunax’ can be used to define an object of type ‘nat’ which is in the347

normal form but which is not a numeral as follows. Consider the transport along a path348

‘transportf.’ Let ‘T’ be any type constant defined in the empty context (e.g. ‘unit’ or349

even ‘empty’). Let ‘f:=fun t:T => t’ be the identity function on ‘T.’ Let ‘e: paths f f’350

be the path obtained by applying ‘funextfunax’ to the homotopy ‘fun t:T => idpath351

t t.’ Set ‘x := transportf (fun g:T -> T => nat) e O.’ By doing this construction352

in Coq and typing ‘Eval Compute in x’ – the command which displays the normal form353

of expression ‘x’ – one immediately sees that ‘x’ does not normalize to a numeral. For354

a further discussion of this phenomenon and its relation to the problem of constructive355

interpretation of the univalence axiom see Section 9.356

Note that while an object of type ‘nat’ defined with the use of axioms may happen357

not to normalize to a numeral, it is not necessarily so. In particular many of the test358

computations in files finitesets.v, hz.v and hq.v use theorems and definitions which359

include ‘funextfunax.’360

Axiom ‘funextfunax’ is known as the functional extensionality axiom. In its original361

form it is not even an ‘axiom,’ i.e., the type of ‘funextfunax’ cannot be proved to be a362

proposition. More precisely, one can show that the homotopy type corresponding to the363

type of ‘funextfunax’ under a univalent model has more than one connected component.364

To deal with this issue we use everywhere not ‘funextfunax’ itself but its corollary365

‘funcontr’ which can be shown to be a proposition.366

In the following parts of the library we use ‘funcontr’ to show that the depend-367

ent product construction interacts in the expected way with weak equivalences (see368

‘isweqmaponsec’ and ‘isweqmaponsec1’) and with h-levels (see ‘impred’). We also prove369

a number of results which justify our use of ‘is’ prefix in the names of constructions370

such as ‘iscontr’, ‘isweq’ and ‘isofhlevel’ by showing that the types of corresponding371

constants are indeed of h-level 1.372

4. File hProp.v373

This is the only (so far) file in the folder ‘hlevel1.’ It contains basic results related to374

types of h-level 1, i.e., to propositions. First we introduce the type ‘hProp’ which relates375

to types of h-level 1 in the same way as the universe ‘UU’ relates to all types. In fact we376

should consider the universe ‘UU’ as a parameter of ‘hProp’ writing ‘hProp UU’ for the377

type of propositions in a universe ‘UU.’ Unfortunately the universe management system378
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does not allow universe parameters and we are forced to consider ‘hProp’ with respect to379

a fixed universe ‘UU.’380

In the univalent model a type is a proposition iff it is empty or contractible. Therefore,381

the model of ‘hProp UU’ is the simplicial subset of the model of ‘UU’ which consists of two382

connected components – the component of the empty type which is a 1-point simplicial383

set and the component of contractible types which is a large (relative to ‘UU’) contractible384

simplicial set.385

This creates problems with the next construction in ‘hProp’ which we call ‘ishinh UU’386

and which is also known as the bracket type or squash type construction. The idea is387

that for a type ‘T’ there should be a proposition ‘ishinh UU T’ which is true iff ‘T’ is388

inhabited. This is equivalent to saying that ‘ishinh UU T’ should be defined together with389

a function ‘hinhpr T : T -> ishinh UU T’ which is universal among functions from ‘T’390

to propositions. Using the fact that h-levels are stable under the formation of dependent391

products (‘impred’ from uu0.v) we show in ‘isapropisinh’ that ‘ishinh UU T’ is indeed392

a proposition and in ‘hinhuniv’ that the function ‘hinhpr’ it is universal.393

However, there is an element of cheating here. In fact this part of hProp.v would not394

go through in un-patched Coq. The only reason it works in Coq is that we use the patched395

version which does not check universe consistency.396

The problem is that ‘ishinh UU T’ is a proposition in a bigger universe than ‘UU’ which397

is universal with respect to functions from ‘T’ to propositions in ‘UU.’398

How can this problem be fixed without introducing potential inconsistency? There are399

currently three ideas. The first two have to do with resizing rules and the third with higher400

inductive types. All three are associated with interesting unsolved problems. Note that401

the issue is particular to the constructive setting. If we did not care about computation402

and added the excluded middle axiom then we could use a double negation version403

‘isinhdneg’ of ‘ishinh’ which does not lead to any issues with universe levels.404

In the following part of the library we define an interpretation of intuitionistic logic on405

‘hProp.’ The construction of ‘ishinh UU’ is a necessary prerequisite for the construction406

of the disjunction – the disjoint union of two propositions considered as types is not407

in general a proposition and one has to apply ‘ishinh UU’ to obtain disjunction as an408

operation on propositions.409

In the last part of the file, we introduce the univalence axiom for ‘hProp’ and consider410

some of its corollaries.411

5. File hSet.v412

This file contains basic results related to sets, i.e., types of h-level 2. The first brief section413

discusses types which satisfy axiom of choice, i.e., which are ‘projective objects.’ It is later414

used in stnfsets.v and fintesets.v to show that the axiom of choice holds for families415

over finite sets.416

Then we introduce a series of definitions and results about relations on types. Many417

of these results are later used to prove standard properties of comparisons on natural418

numbers and later on integers and rational numbers.419
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The most important part of this file deals with set-quotients of types. The theory420

of quotients is well known to be one of the difficult points of the usual constructive421

type theory. The univalent model provides an explanation for this fact – since types422

are homotopy types rather than sets the quotients need to be understood as homotopy423

quotients which are often very complicated.424

The set-quotients are, from homotopy-theoretical point of view, quotients with respect425

to ‘homotopy-invariant equivalence relations.’ The finest such relation is given by the426

condition ‘a is path-connected to b’ with the corresponding quotient being π0. Quotients427

with respect to stronger equivalence relations on T are quotients of π0(T ). The quotient428

with respect to the strongest relation, i.e., the one where any two points are equal is429

equivalent to ‘ishinh UU T.’430

While in classical setting such quotients create no problems in the constructive setting431

things are more complicated. One problem is the increase in the universe level when one432

passes to a quotient. It is similar to the problem which we discussed in the context of433

‘ishinh UU.’434

Another problem can be seen in the way in which taking quotients interact with435

taking sub-objects. Let ‘X’ be a type, ‘R’ an equivalence relation on ‘X’ and ‘P:setquot436

R -> hProp’ a predicate on the quotient of ‘X’ with respect to ‘R’. The composition437

‘Q’ of ‘P’ with the projection ‘setquotpr R:X -> setquot R’ is a predicate on ‘X’.438

Let ‘U:= carrier P’ and ‘X’:= carrier Q’ be they sub-objects of ‘setquot R’ and439

‘X’ respectively corresponding to ‘P’ and ‘Q.’ The restriction ‘R’’ of ‘R’ to ‘X’’ is an440

equivalence relation and we may consider two types ‘setquot R’’ and ‘U’. As is proved441

in ‘weqsubquot’ these two types are equivalent. However the equivalence ‘U -> setquot442

R’,’ the obvious function ‘X’ -> U’ and the projection ‘setquotpr R’: X’ -> setquot443

R’’ do not commute computationally.444

This leads for example to the use of somewhat unnatural constructions to define the445

inverse on non-zero elements of fields of fractions since the straightforward definition446

‘does not compute.’447

A possible way to deal with this issue by extending the type theory of Coq with a448

new component called tfc-terms (from the trivial fibration/cofibration axiom of model449

categories) is briefly discussed in the comments after ‘weqsubquot.’450

At the end of the file hSet.v we describe another approach to set-quotients. Originally451

this part was written because I thought that the computational behaviour of this452

alternative construction will be better. However, it turned out to have very similar453

(and probably equivalent) problems as the first one.454

6. Files algebra1*.v455

These files introduce the standard notions of abstract algebra including the interaction456

between algebraic operations and partial orderings.457

The file algebra1a.v introduces basic definitions related to binary operations and pairs458

of binary operations on h-sets. A few definitions where the generalizations from h-sets to459

all types are straightforward are given for arbitrary types.460
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The file algebra1b.v is about monoids, abelian monoids, groups and abelian groups461

including the construction of monoids of fractions in the abelian case.462

The file algebra1c.v is about rigs (semi-rings with a unit such that 0 · 1 = 1 · 0 = 0),463

commutative rigs, rings and commutative rings. It includes the construction of the ring of464

differences from a rig and of localization of a commutative ring by a multiplicative system465

of elements. We also prove the basic results about the behaviour of partial orderings and466

equivalence relations with respect to these constructions.467

The file algebra1d.v is the first one which contains material which is probably unusual468

for an average mathematician. It deals with the notions of an integral domain and of a field469

in constructive framework. Unlike the notions considered above the notions of an integral470

domain and of a field acquire additional distinctions in constructive Mathematics relative471

to the classical one. For example the condition ‘every non-zero element is invertible’ in the472

definition of a field has three non-equivalent constructive formulations – one can require473

that any element which is non-invertible is zero or that any element which is non-zero is474

invertible or that any element is either invertible or equals zero.475

In algebra1d.v we consider the later definition (any element is either invertible or476

equals zero). It is the strongest (most restrictive) one and it immediately implies that the477

equality on a field is a decidable relation. This is clearly unsatisfactory for many purposes478

– for example real numbers or the ‘field’ of power series do not satisfy this condition. To479

deal with this problem one needs to introduce the notion of apartness relations and study480

their interactions with algebraic structures. Some information on the subject as well as481

further formalizations in the style of this library can be found in Pelayo et al.482

In algebra1d.v we restrict ourselves to the case of decidable equality and give in that483

case a constructive definition of a field of functions of a (decidable) integral domain.484

All constructions in the algebra files have non-trivial extensions from h-sets to arbitrary485

types. For example, the notion of a monoid generalizes to as yet undefined notion486

of an H-type which should include all the higher coherence structures associated with487

associativities. The notion of a partially ordered set generalizes to the notion of (∞, 1)-488

category and the notion of a partially ordered monoid generalizes to the notion of a489

monodical (∞, 1)-category. I do not know what is the classical name for the higher490

analogues of rigs and commutative rigs (going from rigs to rings is straightforward since491

the only axiom involved is the invertibility of addition which has a formulation common492

for types of all levels) and whether such objects been considered. None of these have as493

yet been defined in terms of type theory.494

7. File hnat.v495

In this file, we provide basic constructions and results related to the arithmetic operations496

and comparisons on natural numbers. The type ‘nat’ is introduced in Coq.Init. We use this497

definition for natural numbers and also standard definitions for the addition, subtraction498

(which is defined such that for n < m one has n − m = 0) and multiplication on ‘nat.’499

Our approach to comparisons is different from the one used in Coq.Init. There the500

main comparison is ‘le’ which is introduced through an inductive definition based on the501

principle that ‘le’ is a family of types whose objects are either ‘reflexivity’ comparisons in502
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‘le n n’ or successor comparisons obtained from constructor of the form ‘le n m -> le503

n (S m).’504

Since our library uses only those inductive constructions in Coq which are necessary505

for the definition of the standard ingredients of the Martin-Löf type theory we do not use506

‘le.’ Instead we start with Boolean ‘greater’ which we call ‘natgtb’ defined by induction507

on ‘nat’ as a function ‘nat -> nat -> Bool,’ define ‘natgth n m’ as ‘paths (natgtb n508

m) true’ and then define the three other comparisons ‘natlth,’ ‘natleh’ and ‘natgeh’509

in terms of ‘natgth.’ This has the advantage that the same definitions of ‘less,” ‘less or510

equal’ and ‘greater or equal’ in terms of ‘greater’ work for integers and rationals and the511

proofs of the main properties of these comparisons from the main properties of ‘greater’512

can be directly copied from the ‘nat’ case to the cases of ‘hz’ and ‘hq.’513

After this choice of how to define the comparisons and prove their properties is made,514

the rest is rather straightforward.515

At the end of the file, we analyse the Coq.Init construction of ‘le’-types showing that516

‘le n m’ is always a proposition (i.e., has h-level 1).517

8. File stnfsets.v518

This is the first of the two files where we introduce constructions related to finite sets. In519

this file, we deal only with ‘standard’ finite sets which are defined such that ‘stn n’ is the520

type of natural numbers which are less than ‘n.’521

Most of the file is occupied by constructions of various weak equivalences involving522

standard finite sets. For example, we construct a weak equivalence between ‘weq (stn n)523

(stn n)’ and ‘stn (factorial n).’524

At the end of the file, we use the notion of a standard finite set to formulate and prove525

results on bounded quantification and then to give a univalent proof of the accessibility526

theorem for natural numbers.527

9. File finitesets.v528

We define the structure of having n elements on a type ‘T’ as a weak equivalence from529

the standard set with n elements to ‘T’. A type ‘T’ is called a finite set if there exists (or, in530

terminology of Univalent Foundations Project (2013), if there merely exists) a pair ‘tpair531

n s’ where ‘n:nat’ and ‘s’ is a structure of having n elements on ‘T.’ We then use the532

results of stnfsets.v to show that various constructions on finite sets produce finite sets.533

An important property of our approach is that despite the fact that we use ‘mere’534

existence in the definition of what it means to be finite, there is a function ‘fincard’535

which computes the cardinality of a finite set.536

Related to this function are several examples of computation which are included at537

the end of the file finitesets.v. The property of Martin-Löf type theory which makes538

automatic computation possible is known as canonicity. In its simplest form, the canonicity539

theorem asserts that any object ‘o’ of type ‘nat’ defined in the empty context which is in540

the normal form is a numeral, i.e., a sequence ‘S ... S O’ (recall that ‘O’ is the notation541

for 0 ∈ N and ‘S’ is the notation for the successor function n %→ 1 + n).542
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The possibility of automatic terminating computation is a corollary of this property543

combined with strong normalization – the assertion that any sequence of reductions starting544

with a given well-formed expression is finite†.545

By definition, an expression is said to be in the normal form if there are no reduction546

steps starting with this expression. Therefore, in a theory with strong normalization for547

any well-formed expression there is a finite sequence of reductions which results in an548

expression in the normal form. If the expression in question is an object of type ‘nat’549

we conclude that applying any normalization algorithm to this expression, we will obtain550

after finitely many step a numeral, i.e., we will compute this expression.551

Consider now Martin-Löf type theory together with an added axiom ‘A:T A.’ While552

in Martin-Löf type theory strong normalization holds over any context (i.e., after the553

addition of any number of axioms) the canonicity theorem usually fails over most non-554

empty contexts.555

For example, if we obtain an object ‘o’ of type ‘nat’ using axiom ‘funextempty’ then556

there is no guarantee that its normal form will be a numeral or, as we say, there is557

guarantee that ‘it will compute.’ However, many expressions which contain an axiom will558

compute since the subexpressions containing the axiom get eliminated at some stage of559

the normalization process.560

In Coq, there are two main normalization algorithms which can be called by the561

commands ‘Eval compute’ and ‘Eval lazy’ respectively. Theoretically these algorithm562

are equivalent in the sense that both are supposed to always terminate and the answers563

produced should coincide. In practice, I have encountered many cases when ‘Eval lazy’564

terminates in a reasonable amount of time while ‘Eval compute’ applied to the same565

expression takes too much time for me to wait it out.566

The lines in the file finitesets.v which start with ‘Eval compute’ or ‘Eval lazy’ are567

tests to verify that the use of the axioms in various proofs of finiteness does not interfere568

with the computability of the cardinality function ‘fincard.’569

Note that all of the axioms which we use in this library are corollaries of the general570

univalence axiom. So if or when the main conjecture on constructive interpretation of571

the univalence will be proved, we will have an algorithm which, when applied to any572

well-formed expression ‘o’ of type ‘nat’ which uses any of the axioms of the library will573

return an expression ‘o’’ without any axioms in it and a proof that the new expression is574

pathsequal to ‘o.’ This algorithm will however be of a different kind than the normalization575

algorithms‡.576

10. Files hz.v and hq.v577

In these two files, we define first integers ‘hz’ and then rational numbers ‘hq.’ In both578

cases we follow Bourbaki approach. In the file hnat.v we have defined a commutative rig579

† Strong normalization is a difficult theorem. In particular, using a variant of Goedel’s argument, it can be
shown that it cannot be proved unconditionally. In practice, all known proofs of strong normalization for
Martin-Löf type theory require one to assume that a substantial portion of ZFC is consistent.

‡ For a recent advance in solving this problem see https://github.com/simhu/cubical.
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of natural numbers. To get ‘hz’ we apply the general construction ‘commrigtocommrng’ of580

the ring of differences of a commutative rig from algebra1c.v. To get ‘hq’ we apply to581

the integral domain ‘hz’ the general construction ‘fldfrac’ of the field of fractions from582

algebra1d.v. Note that this construction requires the equality on the integral domain to583

be decidable. This is due to our definition ‘isafield’ of what a field is.584

At the end of both files hz.v and hq.v are more test computations.585

11. File funextfun.v586

In this file, we introduce the univalence axiom and prove that it implies the functional587

extensionality axiom ‘funextfunax’ from uu0.v . The rest of the library does not depend588

on this file.589

12. Appendix: On the Coq System for Naming and Loading Libraries590

I am grateful to Dan Grayson for figuring out the answers to many questions which I591

had while writing this appendix.592

At the top of the files of the foundations library (other than ‘uuu.v’) there are lines593

starting with ‘Add LoadPath’ and ‘Require.’ These are commands which tell Coq where594

to look for ‘libraries’ which are needed to compile the given file. For the purpose of this595

explanation I will use the file ‘uu0.v.’596

Understanding why a particular combination of these commands, the ‘-R’ options in597

the ‘Makefile,’ and the ‘-R’ options in the emacs variable ‘coq-prog-args’ used by the598

‘Proof General’ when starting ‘Coq’ works, while a slightly different one does not, can599

be very confusing. Below, I will try to describe the minimum that I believe is sufficient to600

understand why the particular choices made in foundations library work as they do and601

to be able to predict the effect of possible small modifications of these choices.602

The ‘Require’ command in the file ‘uu0.v’ tells Coq to load a ‘library’ that is603

called ‘Foundations.Generalities.uuu.’ The word ‘Export,’ as opposed to the word604

‘Import,’ means that ‘Foundations.Generalities.uuu’ will also be loaded every time605

the ‘Foundations.Generalities.uu0’ (the name of the library in the file ‘uu0.vo’) is606

loaded.607

Two issues contribute to the complexity of the behaviour of these commands. One is608

how the name of the library which is contained in a given ‘.vo’ file is determined and609

another one is which files and directories Coq will look through when it tries to execute610

the ‘Require’ command and what will be the name of the library it will look for in each611

of these files (which will, as we will see below, be usually different from the name specified612

in the ‘Require.’)613

The ‘.vo’ files are created by ‘coqc,’ the non-interactive mode of Coq, using as the614

input a ‘.v’ file, i.e., a file which contains the humanly readable Coq code. This is what the615

Makefile in the top directory of foundations library does: it calls the program ‘coqc’ for616

each of the ‘.v’ files in the library to produce the corresponding ‘.vo’ files. One cannot,617

for example, experiment with ‘uu0.v’ in ‘Proof General’ until ‘uuu.vo’ has been created618

by running ‘coqc’ on ‘uuu.v.’619
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If no, ‘-R’ option is given when ‘coqc’ command is called then the name of the library620

in the ‘.vo’ file created by this call is the name of the (main part of) the ‘.v’ file as621

given to the ‘coqc.’ In the case of ‘uu0.v’ the command ‘coqc uu0,’ run in the directory622

‘Foundations/Generalities/,’ will put the name ‘uu0’ to the library in the ‘uu0.vo’623

which it will produce. The command ‘coqc Generalities/uu0’ ran in the directory624

‘Foundations’ will put into the ‘uu0.vo’ a ‘library’ called ‘Generalities.uu0.’625

What will happen if an arbitrary ‘-R’ option is given to the ‘coqc’ command I do626

not know. If the option is of the form ‘-R ".’ "name"’ then the name of the library627

in the ‘.vo’ file will be the name one would expect without the ‘-R’ option with ‘name.’628

appended in front of it. The ‘name’ may itself consist of several components, e.g., it can629

be ‘Foundations.Generalities.’630

Suppose now that we want to run coq on the ‘uu0.v’ file. When Coq reads the command631

‘Require Export Foundations.Generalities.uu0’ it will start looking for a file whose632

name is ‘uu0.vo’ ‘on the ‘LoadPath.”.633

The latter expression means the following. ‘LoadPath’ is represented by a list of pairs634

where the second component of the pair is the actual name of a directory and the first635

component is an expression of the form ‘n1.n2.....nk’ (where ‘ni’ are names) which636

Coq will use instead of the directory name internally.637

One can find the content of this list from ‘Proof General’ by running Coq over the638

command ‘Print LoadPath.’639

The ‘Add LoadPath’ command adds to this list the line which you would expect from the640

arguments of the ‘Add LoadPath.’ A version of this command ‘Add Rec LoadPath’ will641

also add the lines corresponding to all of the subdirectories of the directory mentioned642

in the arguments (except possibly some whose names contain symbols which are not643

permitted in identifiers).644

If the Coq program was given ‘-R name namedir’ as an argument it will have the same645

effect on the ‘LoadPath’ as the command ‘Add Rec LoadPath "namedir’ name.’646

When Coq encounters the line ‘Require Export n1.n2....nk.n’ it does the following.647

First it looks for the file ‘n.vo’ in the directories ‘dirname’ which appear in ‘LoadPath’ in648

pair with ‘n1.n2.....nk.’ It will take the first such file it finds and will check whether it649

contains library ‘n1.....nk.n.’ If it does not it will not look for another possible match650

and will give an error message. If it does it will load the library.651

The content of the ‘LoadPath’ can also be modified by using ‘-R’ option when calling652

Coq, e.g., by customizing the variable ‘coq-prog-args’ in ‘Proof General.’ One can653

experiment with the results of such modifications using the ‘Print LoadPath’ command.654
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