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1 Introduction.

These unfinished notes is a byproduct of the paper on cohomological opera-
tions. It can be developed into a paper about general properties of sheaves
and sheaves with transfers in the cdh-topology on the categories of schemes
over a base. In [?] I have choosen to work with the Nisnevich (upper cd-)
topology instead. The plan for possible further results looks as follows.

1. Prove that the full subcategory of D−(Shvcdh(Cor(Sch/S))) generated
by finite complexes of sheaves of the form Ztr(X) is the localization of
the homotopy category of bounded complexes over Cor(Sch/S) with
respect to short distinguished complexes. The key step is to show that
the localizing subcategory in D−(PreShv(−)) generated by these com-
plexes coincides with the subcategory of complexes qiuasi-isomorphic
to zero in the cdh-topology.

2. Prove that D≤0(Schcdh) is a localization of Compl≤0.

3. Prove that D≤0finite i.e. the subcategory generated by finite complexes
over Cor(Sch/S) concentrated in non negative homological degrees is
a localization of Compl≤0finite(Cor(Sch/S)) with respect to the smallest
class of morphisms containing what comes from the short distinguished
complexes and closed uder formation of total complexes (? no good
formulation so far).
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4. Prove the following universality theorems:

(a) Let F : Cor(S)→ C be a functor with values in a simplicial closed
model category such that:

i. F (X) are cofibrant

ii. For a cdh-covering p : U → X the morphism hocolim(F (Č(p)))→
F (X) is a weak equivalence

Then there exists a unique functor DF : D≤0finite(Shvcdh()) →
H(C) such that for a finite complex C over Cor(Sch/S) one has
DF (C) = hocolim(Γ(C)) where Γ(C) is the simplicial object cor-
responding to C.

(b) Let F : Cor(S)→ C be a functor with values in a simplicial closed
model category such that:

i. F (X) are cofibrant

ii. For an elementary cdh-covering p : U → X the morphism
hocolim(F (Č(p)))→ F (X) is a weak equivalence

Then for ay cdh-covering p the morphism like that is a weak equiv-
alence.

(c) Let F : Cor(S)→ C be a functor with values in a simplicial closed
model category such that:

i. F (X) are cofibrant

ii. For a cdh-covering p : U → X the morphism hocolim(F (Č(p)))→
F (X) is a weak equivalence

Then there exists a unique functor DF : D≤0(Shvcdh()) → H(C)
such that for a complex C over ¯Cor(Sch/S) one has DF (C) =
hocolim(Γ(C)) where Γ(C) is the simplicial object corresponding
to C and ¯Cor is the category obtained from Cor by adding infinite
direct sums.

1.1 Finite correspondences for general schemes.

In this section we describe some general constructions based on [?]. For any
Noetherian scheme S we define the category Cor(Sch/S) of finite correspon-
dences over S as follows. Objects of this category are schemes of finite type
over S. To distinguish a scheme considered as an object of the category
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of schemes from a scheme considered as an object of the category of cor-
respondences which we are going to construct we denote the later by [X].
Morphisms from [X] to [Y ] are elements of the abelian group

c(X, Y ) = c(X ×S Y/X, 0)

defined in [?, after Lemma 3.3.9]. The composition of morphisms should be
given by homomorphisms of abelian groups

c(X, Y )⊗ c(Y, Z)→ c(X,Z)

i.e.
c(X ×S Y/X, 0)→ c(Y ×S Z/Y, 0)→ c(X ×S Z/X, 0)

Denote by pX : X → S, pY : Y → S the canonical morphisms. Then for
f ∈ c(X ×S Y/X, 0) and g ∈ c(Y ×S Z/Y, 0) we define the composition
g ◦ f as (pY )∗Cor(cycl(pX)(g), f) where Cor(−,−) is the correspondence
homomorphism constructed in [?, §3.7].

The lemma below follows immediately from the definition of Cor(−,−)
and the fact that the (proper) push-forward commutes cycl(−) homomor-
phisms ([?, Prop. 3.6.2]).

Lemma 1.1.1 [missing] Let Y → X → S be a sequence of morphisms of
finite type, p : Y → Y ′ a morphism over X, Y ∈ Cycl(Y/X, r) ⊗ Q and
X ∈ Cycl(X/S, s)⊗Q. Assume that p is proper on the support of Y. Then

p∗Cor(Y ,X ) = Cor(p∗(Y ,X )).

Proposition 1.1.2 [associativity] For any f ∈ c(X, Y ), g ∈ c(Y, Z), h ∈
c(Z, T ) one has

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Proof: Let us write both sides explicitly:

(h ◦ g) ◦ f = (pY )∗Cor(cycl(pX)((pZ)∗Cor(cycl(pY )(h), g)), f)

h ◦ (g ◦ f) = (pZ)∗Cor(cycl(pX)(h), (pY )∗Cor(cycl(pX)(g), f))

For the first expression we have:

(pY )∗Cor(cycl(pX)((pZ)∗Cor(cycl(pY )(h), g)), f) =
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= (pY )∗Cor((pZ)∗cycl(pX)Cor(cycl(pY )(h), g), f) =

= (pY )∗(pZ)∗Cor(cycl(pX)Cor(cycl(pY )(h), g), f) =

= (pY )∗(pZ)∗Cor(Cor(cycl(pX×ZY (h), cycl(pX)(g)), f)

where the first equality holds by [?, Prop. 3.6.2], the second by Lemma 1.1.1
and the third by [?, Th. 3.7.3]. For the second expression we have

(pZ)∗Cor(cycl(pX)(h), (pY )∗Cor(cycl(pX)(g), f)) =

= (pZ)∗(pY )∗Cor(cycl(pX×ZY )(h), Cor(cycl(pX)(g), f))

by [?, Lemma 3.7.1]. This too expressions are now equal by [?, Prop. 3.7.7].

Lemma 1.1.3 [left] For a morphism of schemes f : X → Y let Γf be
its graph considered as an element of c(X ×S Y/X, 0). Then for any g ∈
c(Y ×S Z/Y, 0) we have

g ◦ Γf = cycl(f)(g)

Proof: This follows immediately from the defnition of Cor(−,−).

Lemma 1.1.4 [right] For a morphism of schemes g : Y → Z let Γg be
its graph considered as an element of c(Y ×S Z/Y, 0). Then for any f ∈
c(X ×S Y/X, 0) we have

Γg ◦ f = (idX × g)∗(f)

Proof: We have

Γg ◦ f = (pY )∗Cor(cycl(pX)(Γg), f) = (pY )∗Cor(idX×ZY × g)∗(1), f) =

= (pY )∗(IdX×ZY × g)∗Cor(1, f) = (pY )∗(IdX × g)∗(f) =

= (idX × g)∗(f)

where 1 is the tautological cycle on X×SY over itself and the second equality
holds by Lemma 1.1.1.

Applying Lemmas 1.1.3 and 1.1.4 in the case of the identy morphisms we
see that the graph of the identity morphism gives a unit for the composition
of finite correspondences. Together with Proposition 1.1.2 this proves that
we indeed constructed a category. One verifies easily that this category is
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additive with the direct sum given by [X]⊕ [Y ] = [X
∐
Y ]. This category is

denoted by Cor(Sch/S) and is called the category of finite correspondences
over S.

Using again Lemmas 1.1.3 and 1.1.4 we see that the mapping which sends
a scheme X to [X] and a morphism of schemes f : X → Y to its graph which
we will denote by [f ] is a functor from schemes to finite correspondences.

This category has an important version which is called the category
of equidimensional finite correspondences Corequi(Sch/k). It is a subcate-
gory of Cor(Sch/S) which has the same objects as Cor(Sch/S) but where
morphisms from [X] to [Y ] are given by cequi(X ×S Y/Y, 0) (see [?, after
Lemma 3.3.9]). We further define Corequi(Sm/S) as the full subcategory in
Corequi(Sch/S) which consists of objects of the form [X] for smooth schemes
X over S. If S = Spec(k) then Corequi(Sm/S) is the catgeory SmCor(k)
defined in [?, §2.1].

1.2 More on the cdh-topology.

We start by giving a new definition of the cdh-topology. Its equivalence with
the old definition (see [?, §4.1]) is proved in Lemma 1.2.5 below.

Definition 1.2.1 Let p : U → X be a morphism of schemes of finite type
over S. A sequence

∅ = Zn+1 ⊂ Zn ⊂ Zn−1 ⊂ . . . ⊂ Z0 = X

closed subschemes of X is called a a splitting sequence for p if the morphisms
p−1(Zi − Zi+1)→ Zi − Zi+1 have sections.

Definition 1.2.2 [upandlow] The upper cd-topology on Sch/S is the Grothendieck
topology generated by coverings of the form {pi : Ui → U} such that pi are
etale and

∐
pi :

∐
Ui → U has a splitting sequence.

The lower cd-topology on Sch/S is the Grothendieck topology generated
by coverings of the form {pi : Ui → U} such that pi are proper and

∐
pi :∐

Ui → U has a splitting sequence.
The cdh-topology on Sch/S is the Grothendieck topology generated by the

upper and lower cd-topologies.

Remark: In this definition cd− is the abbreviation of “completely decom-
posed” introduced by Nisnevich in []. The adjectives “upper” and “lower”
come from [].
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The following lemma is straightforward.

Lemma 1.2.3 [cdhcov] A morphism p : U → X is a cdh-covering if and
only if there exists a composable sequence of morphisms p1, q1, . . . , pn, qn
which goes from a scheme Y to X and a morphism s : Y → U such that

1. the morphisms pi are proper and have splitting sequences

2. the morphisms qi are etale and have splitting sequences

3. ps = qnpnqn−1pn−1 . . . q1p1

Lemma 1.2.4 [Niscom] The upper cd-topology is the Nisnevich topology.

Proof: The fact that any upper cd-covering is a Nisnevich covering is ob-
vious from the definitions. The fact that Nisnevich coverings have splitting
sequences is proved in [?, Lemma 3.1.5].

Lemma 1.2.5 [cdcov] The definition of the cdh-topology given above is
equivalent to the definition given in [?, §4.1].

Proof: For the proof of this lemma let us call the topology defined in [?, §4.1]
the cdh’-topology. It is obvious from definitions and Lemma 1.2.4 that any
cdh’-covering is a cdh-covering. It is also obvious that any etale morphism
with a splitting sequence is a cdh’-covering. Thus the only fact which needs
a proof is that a proper morphism p : U → X with a splitting sequence is a
cdh’-covering.

Let Z1 ⊂ . . . ⊂ Zn ⊂ X be a a splitting sequence for p. We proceed
by induction on the length of this sequence. If its length is zero than p has
a section and thus it is a covering in any topology. For the inductive step
consider the pull-back square

U1
j̃1→ U

↓ ↓
X − Z1

j1→ X

and let s : X −Z1 → U1 be a section which exists by definition of a splitting
sequence. Set V1 = U − j̃1(U1−s(X−Z1)). Since p is separated s(X−Z1) is
closed and thus V1 is a closed subset of U . In particular V1 → X is proper and
one verifies easily that V1

∐
Z1 → X is an “elementary” cdh’-covering. To
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show that p is a cdh’-covering it is sufficient now to show that U ×X V1 → V1
and U ×X Z1 → Z1 are cdh’-coverings. The first of these morphisms has a
section. The second has a splitting sequence of length less than n.

Definition 1.2.6 [eldis] A Cartesian square in Sch/S of the form

Y ′ → Y
↓ ↓ p
X ′

e→ X

is called a lower distinguished square if p is proper, e is a closed embedding
and p−1(X − e(X ′))→ X − e(X ′) is an isomorphism.
A Cartesian square in Sch/S of the form

Y ′ → Y
↓ ↓ p
X ′

e→ X

is called an upper distinguished square if p is etale, e is an open embedding
and p−1(X − e(X ′))→ X − e(X ′) is an isomorphism.

Remark: In [?, Def. 3.1.3] the upper distinguished squares where called
elementary distinguished squares.

The formulation must be changed for non additive functors!.

Theorem 1.2.7 [general] Let A be an abelian category and F : Sch/S → A
a functor such that for any distinguished square

Y ′ → Y
↓ ↓ p
X ′

e→ X

the chain complex

. . .→ F ((X ′
∐
Y )3X)→ F ((X ′

∐
Y )2X)→ F (X ′

∐
Y )→ F (X)

where the differentials are given by alternating sums of partial projections is
exact. Then for any cdh-covering p : U → X the complex

. . .→ F (U ×X U ×X U)→ F (U ×X U)→ F (U)→ F (X)

where the differential is given by the alternating sum of partial projections is
exact.
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Proof: Denote the complex whose exactness we want to prove by C̃F (p). In
addition for a pair of morphisms p : U → X, q : V → X denote by C̃F (p, q)
the bicomplex whose terms are F (Um

X ×X V n
X).

Lemma 1.2.8 [splitcase] Assume that p has a section s : X → U . Then
C̃F (p) is exact.

Proof: The morphisms F (Un
X)→ F (Un+1

X ) given by F (Id× . . . Id×s) define
a contracting homotopy for this complex. (? signs)

Lemma 1.2.9 [uppersplit] Let p : U → X be an etale morphism with a
splitting sequence

Zn ⊂ . . . ⊂ Z1 ⊂ X

Then the complex C̃F (p) is exact.

Proof: If p has a splitting sequence of length 0 then it has a section and thus
C̃F (p) is exact by Lemma 1.2.8. Assume that we have proven that C̃F (q) is
exact for any etale q which has a splitting sequence of length < n.

Consider the pull-back square

Un
ĩn→ U

↓ ↓ p
Zn

in→ X

and let sn : Zn → Un be a section which exists by definition of a splitting
sequence. Since p is unramified sn(Zn) is an open subset in Un and Vn =
U − ĩn(Un − sn(Zn)) is an open subset of U . One verifies easily that the
pull-back square

Wn → Vn
↓ ↓

X − Zn → X

is an upper distinguished square.
Consider C̃F (p : U → X, q : (X − Zn)

∐
Vn → X). Its first row is C̃F (p).

Its other rows are of the form C̃F (pl) for l > 0 where

pl : U ×X ((X − Zn)
∐
Vn)lX → ((X − Zn)

∐
Vn)lX .

These morphisms have splitting sequences of length less than n. Indeed, pl
for l > 1 are obtained from p1 by base change and for

p1 : (U ×X (X − Zn))
∐

(U ×X Vn)→ (X − Zn)
∐
Vn
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the closed subschemes

(Zn−1 − Zn)
∐
∅ ⊂ . . . ⊂ (Z1 − Zn)

∐
∅

give a splitting sequence of required length. Thus by the inductive assump-
tion the total complex of C̃F (p : U → X, q : (X − Zn)

∐
Vn → X) is quasi-

isomorphic to C̃F (p). It remains to note that the columns of this bicomplex
are exact by our assumption on F .

Lemma 1.2.10 [lowersplit] Let p : U → X be a proper morphism with a
splitting sequence

Zn ⊂ . . . ⊂ Z1 ⊂ X

Then the complex C̃F (p) is exact.

Proof: The proof of this lemma is analogous to the proof of Lemma 1.2.9.
Now we have to find a lower distinguished square

W1 → V1
↓ ↓
Z1 → X

such that U ×X V1 → V1 has a section. Consider the pull-back square

U1
j̃1→ U

↓ ↓
X − Z1

j1→ X

and let s : X −Z1 → U1 be a section which exists by definition of a splitting
sequence. Set V1 = U − j̃1(U1 − s(X − Z1)). Since p is separated s(X − Z1)
is closed and thus V1 is a closed subset of U . In particular V1 → X is proper
and one verifies easily that the pull back-square build out of Z1 → X and
this morphism has the required properties.

Lemma 1.2.11 [gen0] Consider two morphisms p : U → X and q : Y → X
and suppose that

1. C̃F (Y ×X Un
X

q×Id→ Un
X) are exact for all n ≥ 0

2. C̃F (Y m
X ×X U

Id×p→ Y m
X ) are exact for all m ≥ 1.
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Then C̃F (p) is exact.

Proof: Consider the bicomplex whose terms are F (Y m
X ×X Un

X) and the
differentials are given by the alternating sums of partial projections. Its rows

are exactly the complexes C̃F (Y ×X Un
X

q×Id→ Un
X) and by our first condition

they are exact. Thus the total complex of this bicomplex is exact. On the
other hand all the columns of our complex but the first one are exact by the
second condition. Thus the total complex must by quasi-isomorphic to its
first column i.e. to C̃F (p). Combining we get that C̃F (p) is exact.

Lemma 1.2.12 [trrr] Let X
f→ Y

g→ Z be a composable pair of morphisms

such that C̃F ((X
gf→ Z)×Z Y n) are exact for all n ≥ 0 then C̃F (g) is exact.

Proof: Consider the morphisms g : Y → Z and gf : X → Z. The mor-
phisms Xm

Z ×Z Y → Xm
Z have sections for m ≥ 1 and thus by Lemma 1.2.8

C̃F of these morphisms are exact. The complexes C̃F (X ×Z Y n → Y n
Z ) are

exact by assumption. Thus C̃F (g) is exact by Lemma 1.2.11.

Proposition 1.2.13 [comp] Let X
f→ Y

g→ Z be a composable pair of
morphisms such that

1. C̃F ((Y → Z)×Z Xn
Z) are exact for all n ≥ 0

2. C̃F ((X → Y )×Z Y l
Z ×Z Xn

Z) are exact for all n, l ≥ 0.

Then C̃F (gf) is exact.

Proof: We need a lemma.

Lemma 1.2.14 [tech] If the second condition of the proposition holds then
C̃F ((X → Z)×Z Y l+1

Z ) are exact for l ≥ 0.

Proof: Observe first that the morphisms

φm : (Y l
Z ×Z X)m

Y l+1
Z
×Y l+1

Z
(X ×Z Y l+1

Z )→ (Y l
Z ×Z X)m

Y l+1
Z

have sections for m > 0. Indeed it is sufficient to show this for m = 1 in
which case the corresponding morphism is isomorphic to the morphism

Y l
Z ×Z X ×Z X → Y l

Z ×Z X
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which has a section given by the diagonal of X ×Z X. By Lemma 1.2.8 we
conclude that C̃F (φm) are exact for m > 0. By the second condition of the
proposition C̃F (Y l ×Z Xn

Z → Y l+1
Z ×Z Xn

Z) are exact for l ≥ 0. Thus by
Lemma 1.2.11

C̃F (φ0) = C̃F ((X → Z)×Z Y l+1
Z )

are exact for all l ≥ 0.

To prove the proposition we apply Lemma 1.2.11 to morphisms gf : X →
Z and g : Y → Z. By Lemma 1.2.14 C̃F ((X → Z)×Z Y m) are exact for all
m ≥ 1 and by the first condition of the proposition C̃F ((Y → Z)×Z Xn

Z) are
exact for all n ≥ 0. Thus C̃F (gf) is exact.

Now we can finish the proof of Theorem 1.2.7. Let p : U → X be the
cdh-covering for which we want to prove the exactness of C̃F (p). Assume first
that it is a composition of etale and proper morphisms which have splitting
sequences. Then applying inductively Lemmas 1.2.9, 1.2.10 and Proposition
1.2.13 we conclude that C̃F (p) is exact. By Lemma 1.2.3 for general cdh-
covering p there exists a morphism s such that ps = p′ where p′ is of the
form which we just considered. Applying Lemma 1.2.12 we conclude that
C̃F (p) is exact in this case as well. Theorem is proven.

Recall that a functor F from Sch/S to an additive category A is called
additive if F (∅) = 0 and for any X, Y over S the canonical morphism
F (X)⊕ F (Y )→ F (X

∐
Y ) is an isomorphism.

Proposition 1.2.15 [additivecase] Let F : Sch/S → A be an additive
functor to an abelian category. Then the following two conditions are equiv-
alent:

1. For any upper distinguished (resp. lower distinguished, distinguished)
square

Y ′ → Y
↓ ↓ p
X ′

e→ X
(1)

the complex C̃F ((X ′
∐
Y )→ X) is exact.

2. For any upper distinguished (resp. lower distinguished, distinguished)
square as above the complex

0→ F (Y ′)→ F (X ′)⊕ F (Y )→ F (X)→ 0 (2)
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is exact.

Proof: It is obviously sufficient to prove the proposition for upper and lower
distinguished squares. We will say that a functor which satisfies the condition
of the proposition for upper (resp. lower) distinguished squares is called
upper exact (resp. lower exact).

Definition 1.2.16 [plain] A distinguished square is called a plain distin-
guished square if p is a monomorphism.

The following two lemmas is straightforward.

Lemma 1.2.17 [lplain] Let F : Sch/S → A be an additive functor to an ad-
ditive catgeory which has kernels of projectors. Then for a plain distinguished
square the normalized chain complex of the simplicial object Č((X ′

∐
Y ) →

X) with terms
Č((X ′

∐
Y )→ X)n = (X ′

∐
Y )nX

is isomorphic to F (Y ′)→ F (X ′)⊕ F (Y ).

Lemma 1.2.18 [sections] Let

Y ′ → Y
↓ ↓ p
X ′

e→ X
(3)

be an upper (resp. lower) distinguished square and assume that p has a section
s. Then the square

X ′
e→ X

s′ ↓ ↓ s
Y ′ → Y

(4)

where s′ is the induced section of Y ′ → X ′ is a plain upper (resp. lower)
distinguished square.

Lemma 1.2.19 [sections2] Let F be an upper (resp. lower) exact func-
tor. Then for an upper (resp. lower) distinguished square of the form (3)
satisfying the condition of Lemma 1.2.18 the sequence

0→ F (Y ′)→ F (X ′)⊕ F (Y )→ F (X)→ 0

is exact.
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Proof: The sequence in question is the cone of the morphism of complexes
which are the rows of the diagram

F (Y ′) → F (Y )
↓ ↓ p

F (X ′)
e→ F (X)

The sections s and s′ give a section of this morphism. The cone of this
section is the complex associated with the square (4). By Lemma 1.2.17 and
our assumption on F it is exact. Thus the section is a quasi-isomorphism and
therefore the morphism itself is a quasi-isomorphism and its cone is exact.

We can now finish the proof of Proposition 1.2.15. Assume first that F is
such that for any upper (resp. lower) distinguished square of the form (1)
the complex (2) is exact. Consider the complex of complexes

C̃F (Y ′ ×X (X ′
∐
Y )→ Y ′)→

→ C̃F (X ′ ×X (X ′
∐
Y )→ X ′)⊕ C̃F (Y ×X (X ′

∐
Y )→ Y )→

→ C̃F ((X ′
∐
Y )→ X)

as a bicomplex. Then its rows are complexes of the form (2) for upper (resp.
lower) distinguished squares and thus are exact. On the other hand the
morphisms

Y ′ ×X (X ′
∐
Y )→ Y ′

X ′ ×X (X ′
∐
Y )→ X ′

Y ×X (X ′
∐
Y )→ Y

have sections and thus the first two columns are exact by Lemma 1.2.8. We
conclude that the last column is also exact.

Let now F be an upper (resp. lower) exact functor. Consider the same
bicomplex as before. Now we know that its columns are exact and we want
to show that the first row is. One can easily see that all the rows but the
fisrt one are direct sums of complexes of the form (2) for upper (resp. lower)
distinguished squares such that either e is an isomorphism or p has a section.
In the first case the complex (2) is obviously exact. In the second it is exact
by Lemma 1.2.19. Proposition is proved.
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1.3 Presheaves and sheaves with transfers.

Definition 1.3.1 A presheaf with transfers on Sch/S is an additive con-
travariant functor from Cor(Sch/S) to the category of abelian groups.

The category of presheaves with transfers on Cor(Sch/S) is denoted by
PreShv(Cor(Sch/S)). It is an abelian category. The presheaf with transfers
represented on Cor(Sch/S) by [X] is denoted by Ztr(X). Remark: Note
that this notation is not compatible with the notation of [?, §1]. For a smooth
scheme X over a field k the restriction of Ztr(X) to the category of smooth
schemes does not coincide with the functor denoted by Ztr(X) in [?]. The
later is denoted here by Zequi

tr (X). It is the functor represented by [X] on the
subcategory Corequi(Sch/S) of Cor(Sch/S) (see Definition 1.3.8).

Lemma 1.3.2 [representare] For any X the presheaf with transfers Ztr(X)
considered as a presheaf on Sch/S is a cdh-sheaf.

Proof: See [?, Th. 4.2.9].

Proposition 1.3.3 [step1] Let p : U → X be a cdh-covering. Then the
complex

. . .→ Ztr(U ×X U ×X U)→ Ztr(U ×X U)→ Ztr(U)→ Ztr(X)

considered as a complex of sheaves in the cdh-topology on Sch/S is exact.

Proof: It is sufficient to show that the conditions of Theorem 1.2.7 hold for
the functor Ztr(−) from the category Sch/S to the category of sheaves of
abelain groups in the cdh-topology on Sch/S. The part of the conditions of
Theorem 1.2.7 related to the upper distinguished squares follows now from
[?, Prop. 4.3.9] and the exactness of the associated sheaf functor. The part
related to lower distinguished squares follows from [?, Prop. 4.3.3].

Definition 1.3.4 A presheaf with transfers F is called a cdh-sheaf with trans-
fers if considered as a functor on Sch/S via the functor X 7→ [X] it is a
cdh-sheaf.

Applying Proposition 1.3.3 and using the same reasoning as in [?, ...] we get
the following sequence of corollaries.
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Corollary 1.3.5 [cor1] For any presheaf with transfers F on Sch/S the
associated cdh-sheaf Fcdh has a unique structure of a presheaf with transfers
such that the morphism F → Fcdh is a morphism of presheaves with transfers.

Denote by Shvcdh(Cor(Sch/S)) the full subcategory of PreShv(Cor(Sch/S))
which consists of cdh-sheaves with transfers.

Corollary 1.3.6 [cor2] The category Shvcdh(Cor(Sch/S)) is abelian and
the forgetful functor

Shvcdh(Cor(Sch/S))→ Shvcdh(Sch/S)

is exact.

Corollary 1.3.7 [cor3] For any cdh-sheaf with transfers F on Sch/S and
any X of finite type over S there are canonical isomorphisms

H i
cdh(X,F ) = ExtiShvcdh(Cor(Sch/S))(Ztr(X), F )

All our constructions have immediate analogs for the Nisnevich topology (i.e.
the upper cd-topology).

Definition 1.3.8 [equidimtransf] A presheaf with equidimensional trans-
fers on Sch/S is an additive contravariant functor from Corequi(Sch/S) to
the category of abelian groups. A presheaf with equidimensional transfers
on Sm/S is an additive contravariant functor from Corequi(Sm/S) to the
category of abelian groups.

The category of presheaves with equidimensional transfers on Sch/S (resp.
on Sm/S) is denoted by PreShv(Corequi(Sch/S)) (resp. PreShv(Corequi(Sm/S))).
It is an abelian category. We denote the functor represented by [X] on
Corequi(Sch/S) by Zequi

tr (X). The following lemma is straightforward.

Lemma 1.3.9 [Nisrepresentare] For any X the presheaf Zequi
tr (X) on Sch/S

is a Nisnevich sheaf.

Proposition 1.3.10 [step1Nis] Let p : U → X be a Nisnevich covering.
Then the complex

. . .→ Zequi
tr (U ×X U ×X U)→ Zequi

tr (U ×X U)→ Zequi
tr (U)→ Zequi

tr (X)

considered as a complex of sheaves in the Nisnevich topology on Sch/S is
exact.
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Proof: An immediate analog of Theorem 1.2.7 where one has to consider
only upper distinguished squares holds for the Nisnevich topology. The fact
that the condition of this analog holds for the functor X 7→ Zequi

tr (X) follows
from [?, Prop. 4.3.9].

Remark: The sequence of the functors Ztr(−) associated with an upper
distinguished square is, probably, not exact in the Nisnevich topology.

Definition 1.3.11 A presheaf with equidimensional transfers F is called a
Nisnevich sheaf with transfers if considered as a functor on Sch/S (or Sm/S)
via the functor X 7→ [X] it is a Nisnevich sheaf.

As in the cdh-case we have the following sequence of corollaries.

Corollary 1.3.12 [cor1Nis] For any presheaf with equidimensional trans-
fers F on Sch/S (or Sm/S) the associated Nisnevich sheaf FNis has a unique
structure of a presheaf with equidimensional transfers such that the morphism
F → FNis is a morphism of presheaves with equidimensional transfers.

Denote by ShvNis(Corequi(C)) the full subcategory of PreShv(Corequi(C))
which consists of Nisnevich sheaves with transfers on C where C is Sch/S or
Sm/S.

Corollary 1.3.13 [cor2Nis] The category ShvNis(Corequi(Sch/S)) is abelian
and the forgetful functor

ShvNis(Corequi(Sch/S))→ ShvNis(Sch/S)

is exact. The same holds for smooth schemes.

Corollary 1.3.14 [cor3Nis] For any Nisnevich sheaf with transfers F on
Sch/S and any X of finite type over S there are canonical isomorphisms

H i
Nis(X,F ) = ExtiShvNis(Corequi(Sch/S))

(Zequi
tr (X), F )

In addition we have the following convenient fact.

Lemma 1.3.15 [rightexact] The obvious restriction functor

ShvNis(Corequi(Sch/S))→ ShvNis(Corequi(Sm/S))

is exact.
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To establish the relation between the categories of sheaves with transfesr
in the Nisnevich and cdh-topologies we need the following fact which is proved
in [?, Th. 4.2.9(2)]

Lemma 1.3.16 [associate] For any scheme of finite type X over S the
cdh-sheaf associated to Zequi

tr (X) is Ztr(X).

For a small additive category A let PreShv(A) be the category of con-
travariant additive functors from A to abelian groups. For any additive
functor π : A→ A′ we denote by

π∗ : PreShv(A′)→ PreShv(A)

the functor of the form π∗(F ) = F ◦ π. One can easily see ([?, ]) that π∗
has a left adjoint π∗ and if LX is the functor represented by X one has
π∗(LX) = Lπ(X).

This construction applied to the obvious functor

π : Corequi(Sm/S)→ Cor(Sch/S)

gives a pair of adjoint functors which we denote by π∗preshv and πpreshv∗ respec-
tively.

The lemma below follows immediately from the definition of sheaves with
transfers.

Lemma 1.3.17 [shtosh] For a cdh-sheaf with transfers F on Sch/S the
presheaf πpreshv∗ (F ) is a Nisnevich sheaf (with equidimensional transfers).

Consider the diagram of categories and functors

PreShv(Cor(Sch/S))

πpreshv∗
−→
←−
π∗preshv

PreShv(Corequi(Sm/S))

icdh ↑ ↓ acdh iNis ↑ ↓ aNis

Shvcdh(Cor(Sch/S))

π∗
−→
←−
π∗

ShvNis(Corequi(Sm/S))

17



where i are the inclusions, a are the associated sheaf functors and

π∗ = acdhπ
∗
preshvicdh

π∗ = aNisπ
preshv
∗ iNis.

Lemma 1.3.17 implies immediately that pi∗ is a right adjoint to pi∗.
Going back to the case of an additive functor π : A→ A′ between additive

catgeories define

Lπ∗ : Compl−(PreShv(A))→ Compl−(PreShv(A′))

as follows. For a presheaf F let Lres(F ) be the canonical resolution of F by
representable presheaves. For a complex C bounded from the (cohomologi-
cal) above we define Lres(C) as the total complex of the bicomplex obtained
by applying Lres(−) to the terms of C. The functor Lres : Compl− →
Compl− has the following obvious properties.

Proposition 1.3.18 [lres1]

1. Lres(C[1]) = Lres(C)[1]

2. for a morphism f : C1 → C2 there is a canonical isomorphism

Lres(cone(f)) = cone(Lres(f)).

3. For any set of complexes Cα the canonical morphism

⊕αLres(Cα)→ Lres(⊕αCα)

is an isomorphism.

4. For any C the canonical morphism Lres(C)→ C is a quasi-isomorphism.

5. If terms of C are isomorphic to direct sums of presheaves of the form
Zequi
tr (X) for smooth X then the canonical morphism Lres(C) → C is

a homotopy equivalence.

6. The functor Lres takes quasi-isomorphisms of complexes of presheaves
to homotopy equivalences.

Define now Lπ∗(F ) as π∗(Lres(F )). The following properties of Lπ∗ are
straightforward ([, ]).
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Proposition 1.3.19 [lres2]

1. Lπ∗(C[1]) = Lπ∗(C)[1]

2. for a morphism f : C1 → C2 there is a canonical isomorphism

Lπ∗(cone(f)) = cone(Lπ∗(f)).

3. For any set of complexes Cα the canonical morphism

⊕αLπ∗(Cα)→ Lπ∗(⊕αCα)

is an isomorphism.

4. If terms of C are isomorphic to direct sums of presheaves LX repre-
sented by objects X of A then the canonical morphism Lπ∗(C)→ π∗C
is a homotopy equivalence.

5. The functor Lπ∗ takes quasi-isomorphisms of complexes of presheaves
to homotopy equivalences.

In the case of presheaves with transfers this construction gives a functor

Lπ∗ : PreShv(Corequi(Sm/S))→ PreShv(Cor(Sch/S))

which in view of Lemma 1.3.2 factors through the inclusion

Shvcdh(Cor(Sch/S))→ PreShv(Cor(Sch/S)).

Proposition 1.3.20 [lres3] Let f : C1 → C2 be a quasi-isomorphism of
complexes of Nisnevich sheaves with equidimensional transfers. Then Lπ∗(f)
is a quais-isomorphism of complexes of cdh-sheaves with transfers.

Proof: By Propostion 1.3.19(1,2) it is sufficient to show that if C is a complex
of Nisnevich sheaves with equidimensional transfers which is quasi-isomorphic
to zero as a complex of sheaves then Lπ∗(C) is quasi-isomorphic to zero. Con-
sider Lres(C). By Proposition 1.3.18 this complex is also quasi-isomorphic
to zero as a complex of Nisnevich sheaves. By Lemma 1.3.16 the complex
π∗(Lres(C)) is just the complex of cdh-sheaves associated with the complex
of Nisnevich sheaves Lres(C). Since the cdh-topology is stronger than the
Nisnevich topology this finishes the proof.
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Lemma 1.3.21 [directfirst] Let Let k be a field which admits resolution of
singularities (see [?, Def. 3.4]). Then for any cdh-sheaf with transfers G on
Sch/k the adjunction π∗π∗(G)→ G is an isomorphism.

Proof: We have
π∗π∗G = acdhH0π

∗
preshvLresπ∗G

Let π∗preLresπ∗G be the complex of presheaves on Sch/S defined by the rule
that

π∗pre(⊕Zequi
tr (Xα)) = ⊕Zequi

tr (Xα)

with Zequi
tr (Xα) considered as presheaves on Sm/k on the left hand side and

presheaves on Sch/k on the right hand side. There is a canonical morphism

π∗preLresπ∗G→ π∗preshvLresπ∗G

and by Lemma 1.3.16 the induced morphism of complexes of associated cdh-
sheaves is an isomorphism. Thus it is sufficinet to show that the morphism

π∗preLresπ∗G→ G

is a quasi-isomorphism in the cdh-topology. For any smooth scheme U over
k we have

(π∗preLresπ∗G)(U) = (Lresπ∗G)(U) ∼= G(U)

and thus it is a quasi-isomorphism of presheaves over smooth schemes. On
the other hand it follows from the resolution of singularities assumption that
any scheme of finite type over k has a cdh-covering which consists of smooth
schemes. Therefore π∗preLresπ∗G → G induces a quasi-isomorphism of the
complexes of associated cdh-sheaves.

Lemma 1.3.22 [withres1] Let Let k be a field which admits resolution of
singularities (see [?, Def. 3.4]). Then for any Nisnevich sheaf with equidi-
mensional transfers F the canonical morphism Lπ∗(F ) → π∗F is a quasi-
isomorphism of complexes of sheaves with transfers in the cdh-topology.

Proof: It follows immediately from the constructions that

π∗F = acdhH
0(Lπ∗(F ))

and all we have to show is that acdhH
i(Lπ∗(F )) = 0 for i 6= 0. Con-

sider Lπ∗(F ) as a complex of cdh-sheaves of abelian groups on Sch/k. By
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Lemma 1.3.16 it is the complex of cdh-sheaves associated with the complex
of presheaves π∗preLres(F ) (see proof of Lemma 1.3.21) Since the associated
sheaf functor is exact we have

acdhH
i(Lπ∗(F )) = acdhH

i(π∗preLres(F )).

By Lemma 1.3.18(4) for any smooth scheme U over k we have

H i(π∗preLres(F ))(U) = 0

for i 6= 0. The resolution of singularities assumption implies that any scheme
of finite type over k has a cdh-covering which consists of smooth scheme and
therefore acdhH

i(π∗preLres(F )) = 0 for i 6= 0.

1.4 Triangulated categories of motives over S.

Definition 1.4.1 [dmcdh] DM−,eff
cdh (Sch/S) is the localization of the de-

rived category D−(Shvcdh(Cor(Sch/S)) of complexes bounded from the above
over Shvcdh(Cor(Sch/S)) with respect to the localizing subcategory generated
by objects of the form Ztr(X×A1)→ Ztr(X) where A1 is the affine line over
S.

The category DM−,eff
cdh (Sch/S) is called the triangulated category of of ef-

fective motives over S in the cdh-topology. Denote by

Mcdh : Sch/S → DM−,eff
cdh (Sch/S)

the functor which takes X to Ztr(X).

Definition 1.4.2 [dmequi] DM−,eff
Nis (Sch/S) is the localization of the de-

rived category D−(ShvNis(Corequi(Sch/S)) of complexes bounded from the
above over ShvNis(Corequi(Sch/S)) with respect to the localizing subcategory
generated by objects of the form Zequi

tr (X ×A1)→ Zequi
tr (X) where A1 is the

affine line over S and X is a scheme of finite type over S.
DM−,eff

Nis (Sm/S) is the localization of the derived category of complexes
bounded from the above over ShvNis(Corequi(Sm/S)) with respect to the lo-
calizing subcategory generated by objects of the form

Zequi
tr (X ×A1)→ Zequi

tr (X)

where A1 is the affine line over S and X is a smooth scheme over S.
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We denote by
MNis : Sch/S → DM−,eff

cdh (Sch/S)

the functor which takes X to Zequi
tr (X) and use the same notation in the

smooth case.

Lemma 1.4.3 [piupper] There exists a unique functor

Lπ∗ : DM−,eff
Nis (Sm/S)→ DM−,eff

cdh (Sch/S)

such that the diagram

Compl−(ShvNis(Corequi(Sm/S)))
Lπ∗
→ Compl−(Shvcdh(Cor(Sch/S)))

↓ ↓
DM−,eff

Nis (Sm/S)
Lπ∗
→ DM−,eff

cdh (Sch/S)

commutes. For a smooth scheme X over S we have a canonical isomorphism
Lπ∗MNis(X) = Mcdh(X).

Proof: This follows immediately from definitions Propositions 1.3.19 and
1.3.20.

Theorem 1.4.4 [trc] Let k be a field which admits resolution of singularities
(see [?, Def. 3.4]). Then the functor

Lπ∗ : DM−,eff
Nis (Sm/k)→ DM−,eff

cdh (Sch/k)

is an equivalence.

Proof: We need a lemma.

Lemma 1.4.5 [pilower] Under the assumption of the theorem there exists
a unique functor

Rπ∗ : DM−,eff
cdh (Sch/k)→ DM−,eff

Nis (Sm/k)

such that the diagram

Compl−(Shvcdh(Cor(Sch/k)))
π∗→ Compl−(ShvNis(Corequi(Sm/k)))

↓ ↓
DM−,eff

cdh (Sch/k)
π∗→ DM−,eff

Nis (Sm/k)

commutes.
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Proof: ????

Lemma 1.3.22 implies that the analog of Lemma 1.4.3 holds for the functor
π∗. Since the functors π∗ and π∗ between the catgeories of complexes are
adjoint the same holds for the corresponding functors between the categories
DM . It remains to show that for any F in ShvNis(Corequi(Sm/k)) the

adjunction F → π∗π
∗F is an isomorphism in DM−,eff

Nis (Sm/k) and for any
G in Shvcdh(Cor(Sch/k)) the adjunction π∗π∗G → G is an isomorphism in
DM−,eff

cdh (Sch/k). The second statement follows from Lemma 1.3.21.
To prove the first one it is clearly sufficient to show that if π∗F is zero

then F is zero in DM−,eff
Nis . For this it is sufficient (by [?, ]) to prove the

following lemma.

Lemma 1.4.6 [othogonal] Let F be a Nisnevich sheaf with equidimensional
transfers on Sm/k where k admits resolution of singularities. Then for any
homotopy invariant Nisnevich sheaf with transfers Φ and any i ≥ 0 one has

ExtiShvNis(Corequi(Sm/k))
(F,Φ) = 0

Proof: The proof is directly analogous to the proof of Lemma 5.4 in [?] with
the only change being that one works with sheaves with transfers instead of
the usual sheaves.
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