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0. Introduction

In the present paper we prove the result, the particular
case of which was announced in fSVZ]. Both results present the
sequences of finite-term constructions that approximate the
Jacobilans of complex algebraic curves.

The problems, to which this paper is devoted, originated
from A,Grothendieck's unpublished paper [Grl. In this paper the
unexpected connection between the combinatorial topology of
graphs on the surfaces and algebraic curves over number fields
was revealed. Namely, Grothendieck established the equivalence
between "dessins d'enfant" - the graphs on the compact oriented
surfaces with the complement homeomorphic to disjoint union of
open cells - and the pairs (X,p) of complex algepraic curves X

and rational functions ﬁ:X->P1

(C€C), whose only finite critical
values are 0 and 1; in this equivalence the graphs are restored
as the preimages ﬁ_lll,w] of the real segment of P1(C).
Previously G.Belyi [Bel proved, that such function @ exists on a
complex curve X if and only if X is a complexification of some
curve, defined over a number field; these twoc results sum up in
the above mentioned relation between combinatorial topology and
arithmetic. See [8V21] for the details.

So the problem of describing the algebraic curves over
fields of comple; and algebralc numbers in combinatorial terms

arises. In the present paper the only graphs on the surfaces we

deal with are trianguiations. There is another way to get the




complex structure on the surface, starting from triangulation.
Namely, the complex structure is defined by the introduction of a
Euclidean structure on all the triangles (i.e., the specification
of lengths of‘all the edges), similarly to the introduction of a
Riemannian metric on a smooth surface; see 1.1 below. As it was
shown in [8V1], the curves over number fields (and all of them!)
arise from the eguilateral structures; in the present paper we
deal with the arbitrary lengths and in particular show, that we
obtain all the complex curves (theorem 1.2.2 below).

The problem we solve is to define the jacobian of the curve
in terms of the piecewise euclidean structure on it. To do this,
we develop, following [Dol, some piecewise-linear analogue of the
smooth Hodge theory.on the riemannian surfaces and define the
approximate jacobians, whose limits under the infinite refinement
of the triangulations are the classical ones.

The problem of the effective estimates will be treated in a

separate paper, as well as some explicit calculations.

1.Euclidean simplicilal surfaces and assocliated complex

structures.

1.0 Notations

Let S be a simplicial scheme of dimention 2. We shall denote
by SO,S1 and S2 the sets of its 0-,1- and 2-dimensional simplexes
respectively. S is called pseudo-surface if for each ae%. there
exist exactly two 2-simplexes o _,o_ such that oeo ,0co_. The

orientation of the simplex is by the definition the cyclic order



‘on the set of its vertices. The set of oriented g-simplexes will

be deno_ted by % Note that %=% . The orientation of S is the
function x:% —> {+1,-1} such that for each ceq one has
xlo, )=—xloc_), where o _,0_ are oriented with respect to the
orientation of o. The pair (5,x) is called the oriented
pseudo-surface. The unordered éets of objects will be listed
inside {3}, the objects with the cyclic order - inside <=, and the
ordered objects - inside (). We shall also use the standard
notations from the combinatorial topology: st(e) for the star of
the simplex, s%l for the q—ékeleton of the simplicial scheme 5

and |S| for its geometrical realization (see [Spal).

1.1 Euclidean structures
A Euclidean structure on the simplicial surface S is
defined by the length function
?»:Sl — R,
satisfying
h(vo,v2)<k(v0,v1)+K(v1,v2)
for all {v ,w&,vb}eﬁb. We shall call a simplicial surface S
together with the length function A the euclidean simplicial
surface.

We shall also use the area function S:S‘2 — F , associated
with the length function: S{VO'Vl'VZ} is, by definition, the area
of the triangle with the sides h(vo,vl),A(vl,vz),h(vz,vo).

The euclidean simplicial surface (S,A) is called equilateral
1Pf its length function is constant. Note that in this case the

2

area function is also constant and egqual to ¥3rS/4.
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1.2 Associated complex structures

Let (S,A) be an euclidean simplicial surface. We are
going to define a complex Riemann surface XS,?» which we shall
call the complex realisation of (3,»). Denote by T<a,b,c> the

oriented euclidean triangle with the sides <a,b,c>. The

S, A
pasting along the common sides all the triangles

underlying topological surface XS?\ of X is obtained by

T corresponding to positevely

<7\(v0,v1),h(vl,vz),?»(vz,vo)'>
oriented 2-simplexes (VO'Vl'VQ) of S.

Note that it 1is naturally homeomorphic to the usual
geometric realisation |S| of the simplicial scheme S, and in
particular is an oriented closed topological surface.

The C-valued continuous function on an open subset of )%,7\
is called holomorphic iff its restriction on each triangle

T is holomorphic with respect to the

<?»(vo,v1 ),7\(\/1 ' Vo ) ,A(vz,vo ) >
natural complex structure defined by its embeding into Ug=A\1 (C).
Thie construction defines the sheaf of rings on topological space
XS,?» which we denote by 03’7\.

Theorem 1.2.1 The palr ”%,?\'%,7\.) i1s a compact complex
Riemann surfrace.

Proof: Ve Eave to prove, that each point of )% a has a

4

neighbourhood isomorphic to complex disc as a ringed space. It is
obvious for all the points of XS N except those corresponding

to the vertices of 8. Therefore it would be sufficient to show

that for each such point there exist its neighbourhood U on XS a
14
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such that O (Ul=€C. For each (u,v,w) such that <u,v,w> 1s the

S,
positively oriented 2-simplex of 3 choose an embedding of

T into R? as follows: 3

<alu,v)i,aAlv,w),Alw,ul>

- ™~

Denote this planar triangle by T(u,v,w)'

let v be a vertex of S and iv,vo,v1>,ﬁv,v1,v2P,...,&v,vn,vo>
be positively oriented 2-simplexes of the star of v ordered
clock-wise. Denote by uithe angle between the edges (v,vi_l) and

(v,vi) on the triangle T {1=zi=n).For ZGT( =C

(v,vi_l,va) v,vi_l,w&)

set

Y-1wla +a ..%a 4) a o
e LI i1 z * , where
2n

a1+a2 e e

Fi(z)

w = ronglt
n
All the Fi‘s together define a holomorphic function F on the

star of v in XS,A' -




We shall denote (XS,?»’OS,?\ )by XS,?\.' One can easily see, that
for A'=cA, where c is a positive constant, there is a natural
isomorphism %‘),7&_—4%,7\' . In particular there 1is a unique
Riemann surface XS defined by the equilateral euclidean structure

on S.

Remsark: Note that besides the complex structure there exists one
more additional structure on XS L namely almost everywhere f{lat

metric with the singularities in the vertices of S.

Theorem 1.2.2 For any compact complex Riemann surface X there
exists a euclidean simplicial surface (S,Aa) such that Xg a2 X-

Proof: lLet f:X — lﬁ (C) be any non-constant rational function
unramified over infinity and Pyr-+ Py its critical values. Choose
a conformal isomorphism i.ﬂg (CI{w}—> F?. Obviously there

exists a triangulation =:|S|—> PI(C) of PI(C) such that:

a) T(lskI(S)l) does not contain an infinity

b) for each l-simplex ¢ of S itl{|e]|) is a linear segment on
RZ

c) for each i=1,..,n there exist O-simplex o, of S such that
T((oi|)=pi.

We can define a euclidean structure A on S setting for oesl.
Ae) to be the usual length of the segment i<(|e|). Denote by
f—l(S) the simpicial surface corresponding to the preimage of
{S,r) with respect to f. The euclidean structure A on S defines

1

the euclidean structure f " (A) on f_l(S) and ,therefor we obtain



an euclidean simplicial surface (f 1(S), f“1

(A)). It is easy to

show that X

is isomorphic to X. g
{(f :

-1 -1

(5),f “(A))

Remark: It can be shown, that there exists such S, that, varying
A, we cover all the moduli space. It seems to be'ver§ likelywise
that this construction is closely connected with Penner's
construction [Pen] of +the +triangulations of the Teichmuller

spaces.

Theorem 1.2.3 Let X be a compact complex Riemann surface, then
it can be realized as XS for some simplicial surface S 1iff 1t 1s
defined over Q.

Proof: see [8V1],[8V2].4
2 .Hodge Theory on the euclidean simplicial surfaces.

2.0 Cohomologies and Whitney maps.

lLet (3,A) be an euclidean simplicial surface. We dencte by
C*(S,?) (?=R,C,Z) the usual complex of simplicial 7-valued
cochains and by A*(S,A,?) (7=R,C) the complex of 7-valued
C®-forms on XS,A' We shall omit the coefficient groups where
possible.

There is an obvious De Ram map R* from A® to C° which is
well known to be quasi-isomorphism. In the paper [W] the
"quasi-invers" f;r this map was introduced; following [Dol, we
call it the Whitney map. It is defined in the following way.

For each wvertex v of 5 define the continuous function




bV:XS AR called the barycentric coordinate associated with v.

This function is uniquely defined by the following conditions:

{1) bV is identically zero outside the star st{v) of v on

5,20

(ii) b _(v)=1;
v

(11i) b is linear on the triangles T . for all
v <u, Vv, wr
{u,V.w}eSQ.

Nc-&a that b, is C® almost everywhere (with respect to the
C®-structure, defined by the complex structure).

2(A%)(5,) be the L?-completions of the spaces A%(5,n)

let L
with respect to the metric of constant negative curvative on )% N
corresponding to the complex structure. For vertex v of S denote
by dbv the "differential” of the barycentric coordinat bv. By
definition it is an element of I_2(Aq 1HS,A) represented by the
1-form which is equal to the usual differential of b, in the
points where it is smooth and is zero in other points. The
Whitney maps W3:C3(5,A)——=12(A9)(5,0) are defined as follows:
q
. i N
wlis, =) (-1)"b_db_ A...Adb_ A...Adb
vo,..vq) v v v

i 1 i vq
i=0

Lemma 2.0.1 awd l=y3q

Proof: see [Do ].-

2.1.8calar products and harmonic cochains,
It is not difficult to show that for ceCl(5,A) the cochain
R{W(c)) is well defined and equal to c. In particular, W are

embeddings. Therefore, we can define scalar products on & (5,a),



setting
(x,y)s’h=(wq(x),wq(y)) (see Appen@ix for explicit
formulae).
The scalar products on the components of the cochain complex

define a Hodge decomposition as follows. Denote by a* the adjoint

linear operator to d. Then one has:
cd(s,a)= Imd & (ker d n ker d*) & Im a",

where @ 1is, in fact, the orthogonal decomposition. The natural
projection from ker d n ker a to HI(S,A) is an isomorphism and
the inverse map defines the scalar product on the cohomology

space. We shall denote this product also by ( , )S a Besides

this one, there is another scalar product ( , ) o oOn this space,

L

defined by its embeding into the space of harmonic 1-forms on

X

S Generally these products do not coinside.

The 1-cochains from the subspace ker d n ker a®¥ will be
called pilecewise-euclidean harmonic (or PE-harmonic) cochains.
For a cohomology class c¢ we shall denote by [c:%’x its

PE-harmonic representative.

2.2. Piecewise euclidean jacobians.
The Hodge operator *g L H (5,0 —H (5,0) 1s defined as the
unique linear operator, satisfying
=aN
(a,b)s'h a (*S,xb)

for all a,beHl(S,A), where A is the wedge cohomology product.

10
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Proposition 2.2.1 All the eigenvalues of x* are purely'imaginary
complex numbers.
Proof: For any ceH' (5,A)\{0} we have (c,5)>0. On the other hand,
c/c  is purely imaginary, since ;;g = ¢ = -c’c. For the
eigenvector c, satisfying *c=uc,

0 < (c,c) = c™c = chuc = u clc.g

LQSA))H@SMEmmeofHH&CL

Denote Q(LI(S,A) (resp. @
generated by the eigenvectors of g gt corresponding to the

elgenvalues with negative (resp. positive) imaginary parts.

2.2.1 Definition. The piecewise-euclidean Jjacobian of the palr
(S,a) 1s the complex torus

J(S,A)=(no'1(S,A))*/Hlls,z).

3. The approximation of the complex jacobians by the

piecewise-euclidean ones.

3.0. Regular subdivisions and cochain refinement.
Let S be a simplicial surface. The regular subdivislion of S
1s the subdivision obtained by the following refinement of the

2-simplexes of 35:

11
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N

(the middlepoints on each sides are defined as new vertices).

We can also define in the obvious way a regular subdivision
of a euclidean simplicial surface. Denote it by =d(S,A) or

(sd{5),sdla)).

Proposition 3.0.1. There is a natural isomorphism

N Xgq(8, a7 X5, 0t
Proof: The tautoclogical maps are obviously holomorphic. g

Define the map r:é (S,A)———?é (sd(S),sd(A)) by the condition
that it assigns to an element of the form Suv) the cochain

shown in the picture below:

~1/8 /\
K (4
\/

12

PUSPPEND



Proposition 3.0.2. The followlng diagram 1s commutative:.

1 v oAl
c'(s,n) > C'(sd(8),sd(A))

12ealyis,a) n s 12(al

J(sd(S),sd(A))
Proof: Direct computation.g

In the sequel we shall denote by (SIn],Aln]) the n-th

iteration of sd,applied to (S5,A). We shall also identify é (5,n)

with its image in Cl(sd(S),sd(A)) and the space 1?(A1)(S,h) with
N\

r?(al(sa(s),sdia)). !

3.1 Main theorem.

Approximation lemma 3.1.0. The union of the subspaces

Wl(dCO(S[n],x[n]) for n=z 0 l1s L2~dense in the closure of the

subspace of exact 1-forms on Xs x
Proof: This assertion is just the reformulation of the fact that
any smooth function can be Lz—approximated by pilecewise-linear

ones. »

Now we are ready to prove our main theorem:

13
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Theorem 3.1.1. Let (8,A) be a euclidean simplicial surface. Then

Lim (J(S8inl,alnl) gJ(XS 7\)
n—ow '

where J(X is the usual jacobilan of the complex riemannian surface

S, A

XS,A'

Proof: We realize the jacobian J(}gS N ) as

0 1

(X )1 /H (XS A'Z)' where the cohomology group acts on the

S, A
holomorphic differentials by integration. The jacobilans

J(SIn)l,Aln]) are defined in +the similar way as factors

0,1 0,1

(Q (S[n],A[n]))*/H ((SInl,alnl),Z). All the (S[nl,alnl))'s

can be thought of as lying in the same space H (Xs A ; all the

H! ((S[nl]l,Alnl]),Z2)'s as well as H (X Z) act on this space, thus

3,n7
being canonically identified.. This means, that +to prove our

thecorem it is sufficient to show, that the limit of the subspaces

QO'I(S[n],A[n]) in HI(XS A'C) is the subspace Qo’l(X

S, !

Since the considered spaces are defined in terms of the

» 1
scalar prodtcts ( , )S[n],K[n] and ( , )L?, the theorem will be
proved, if we show, that

Timt , ) =(, ) ,.

n— o Snl,aln] L?

By definition, the scalar products ( , )S[n],A[n] are induced

from the standard scalar product on 1?(A1(%S N )) wvia the

embedding 'c———éwl({ckl), where we write [c]l_1 instead of

[e] . Therefore, i1t suffices to show, that Lim
Sinl,aln] _—

. n @

Ql([c]n) exists and is harmonic in the usual sence.
The proof proceeds in the following steps.

1. For any CGHl(X,C)

14




1

1 1 0 +
W ([c]n)eZ (X, CIntW (aC" (S[nl1))) ,

2 :
where Z1 is the L°-closure of the space of closed forms and + is

the orthogonal complement in the Al(X) metric. It follows from

2.0.1.

1

2. wiac®(sinl)) < w!

(ac®(sin+1 1.
Follows from 3.0.2.

3. W ([C]n+1) is the orthogonal projecticn of Wl([c]n) onto
1 0 +
W (aC  (SIn+1 1))

To verify it it is sufficient to note that

1 1

wiite] )—Wl([c}n)=wl([c} [l )eW (ac®(8in+11)).

n+l n+1 ¥

4. Denote Z' (X,C)nW (a® (S[n1)) by L. We have Lycl,c...L c...,

1
and, by the approximation lemma, Q)%l = HI(X,C) iz the space of
nx

the harmonic forms on X. The theorem follows now from 3. and the

1

comleteness of A (X).-
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AFPENDIX.

Explicit formulae

1.8calar products in CO‘

2. Scalar products in C".

2.

(8

(u,v)

1

<u,v>'

&
<u,w>?

)=

( 0, if {u;v}esl and u=v

1 _ .
< 3 E: Si if u=v (see fig.1)

r*
-

1 (Sl+82) if {u,v}eSI (see fig.3)

1

(0 if {u,v,w}e-,S2 and {u,v}={u,w}
Zg%—(3b2+3c2-a2)+Z§%—43d2+392—a2) 1if v=w (see
1 2

fig.3)

L Z%g(SCz—az—bz) if {u,v,wleS, (see fig.2]

2.2 If w,n are 1-cocycles then:

(w,n)=é—2%[w( e nlo) (a2 +62-c2 1rerlbin(b) (a2~ +c2 Jrela)nta) (b2 ~a2 +c? 3]

oeS2

(see fig.2)

16




.

2.8 1f weCl(8,n) and veS, then:

- 2 2
(w,d5, 24§:$ [ 2 a3t ela )-ela,, )-26(b i))+3bi(w(ai)+w(ai+1))}

where n is the valency of the vertex v (see fig.1).

2.4 If £<C0(S,7) and veS, then:

Elw! 2.2 .2
(af,a5 )= 82: [ Flv, 1-Plv, 1) (a2-a2  )ep?

-f{
(2f(v)=flv,) f‘vi+1))]

where n is the valency of the vertex v (see fig.1).

///ﬂ{\\\\

e
v a, 7 Visd

fig.1
w
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