\begin{thebibliography}{1} \bibitem{BL} Spencer Bloch and Stephen Lichtenbaum. \newblock A spectral sequence for motivic cohomology. \newblock {\em www.math.uiuc.edu/K-theory/062}, 1994. \bibitem{FS} Eric~M. Friedlander and Andrei Suslin. \newblock The spectral sequence relating algebraic {K}-theory to motivic cohomology. \newblock {\em www.math.uiuc.edu/K-theory/432}, 2000. \bibitem{Grayson} Daniel~R. Grayson. \newblock Weight filtrations via commuting automorphisms. \newblock {\em $K$-Theory}, 9(2):139--172, 1995 or {\em www.math.uiuc.edu/K-theory/003}. \bibitem{Mh} Fabien Morel. \newblock The homotopy t-structure of the stable homotopy category of schemes. \newblock {\em www.math.jussieu.fr/morel}, 1999. \bibitem{MoVo} Fabien Morel and Vladimir Voevodsky. \newblock {${\bf A}^1$}-homotopy theory of schemes. \newblock {\em Publ. Math. IHES}, (90):45--143, 1999. \bibitem{Amnon1} Amnon Neeman. \newblock The {G}rothendieck duality theorem via {B}ousfield's techniques and {B}rown representabilty. \newblock {\em J. Amer. Math. Soc.}, 9(1):205--236, 1996. \bibitem{talk} Vladimir Voevodsky. \newblock The {$\af$}-homotopy theory. \newblock In {\em Proceedings of the international congress of mathematicians}, volume~1, pages 579--604, Berlin, 1998. \bibitem{HH0} Vladimir Voevodsky. \newblock {$\Delta$}-closed classes. \newblock {\em www.math.uiuc.edu/K-theory/442}, 2000. \bibitem{open} Vladimir Voevodsky. \newblock Open problems in motivic homotopy theory, {I}. \newblock {\em www.math.uiuc.edu/K-theory/392}, 2000. \end{thebibliography}