\begin{thebibliography}{1}

\bibitem{BL}
Spencer Bloch and Stephen Lichtenbaum.
\newblock A spectral sequence for motivic cohomology.
\newblock {\em www.math.uiuc.edu/K-theory/062}, 1994.

\bibitem{FS}
Eric~M. Friedlander and Andrei Suslin.
\newblock The spectral sequence relating algebraic {K}-theory to motivic
  cohomology.
\newblock {\em www.math.uiuc.edu/K-theory/432}, 2000.

\bibitem{Grayson}
Daniel~R. Grayson.
\newblock Weight filtrations via commuting automorphisms.
\newblock {\em $K$-Theory}, 9(2):139--172, 1995 or {\em
  www.math.uiuc.edu/K-theory/003}.

\bibitem{Mh}
Fabien Morel.
\newblock The homotopy t-structure of the stable homotopy category of schemes.
\newblock {\em www.math.jussieu.fr/morel}, 1999.

\bibitem{MoVo}
Fabien Morel and Vladimir Voevodsky.
\newblock {${\bf A}^1$}-homotopy theory of schemes.
\newblock {\em Publ. Math. IHES}, (90):45--143, 1999.

\bibitem{Amnon1}
Amnon Neeman.
\newblock The {G}rothendieck duality theorem via {B}ousfield's techniques and
  {B}rown representabilty.
\newblock {\em J. Amer. Math. Soc.}, 9(1):205--236, 1996.

\bibitem{talk}
Vladimir Voevodsky.
\newblock The {$\af$}-homotopy theory.
\newblock In {\em Proceedings of the international congress of mathematicians},
  volume~1, pages 579--604, Berlin, 1998.

\bibitem{HH0}
Vladimir Voevodsky.
\newblock {$\Delta$}-closed classes.
\newblock {\em www.math.uiuc.edu/K-theory/442}, 2000.

\bibitem{open}
Vladimir Voevodsky.
\newblock Open problems in motivic homotopy theory, {I}.
\newblock {\em www.math.uiuc.edu/K-theory/392}, 2000.

\end{thebibliography}