\begin{thebibliography}{1} \bibitem{Boardman} J.~M. Boardman. \newblock The eightfold way to {BP}-operations. \newblock In {\em Current trends in algebraic topology}, pages 187--226. AMS/CMS, Providence, 1982. \bibitem{delnotes} Pierre Deligne. \newblock Voevodsky's lectures on motivic cohomology. \newblock {\em www.math.ias.edu/{$_{\textstyle \tilde{}}\,$}vladimir/seminar.html}, 2000/2001. \bibitem{Milnor3} John Milnor. \newblock The {S}teenrod algebra and its dual. \newblock {\em Annals of Math.}, 67(1):150--171, 1958. \bibitem{Milnor} John Milnor. \newblock Algebraic {K}-theory and quadratic forms. \newblock {\em Inv. Math.}, 9:318--344, 1970. \bibitem{MoVo} Fabien Morel and Vladimir Voevodsky. \newblock {${\bf A}^1$}-homotopy theory of schemes. \newblock {\em Publ. Math. IHES}, (90):45--143, 1999. \bibitem{SE} N.~E. Steenrod and D.~B. Epstein. \newblock {\em Cohomology operations}. \newblock Princeton Univ. Press, Princeton, 1962. \bibitem{MC} Vladimir Voevodsky. \newblock The {M}ilnor {C}onjecture. \newblock {\em www.math.uiuc.edu/K-theory/170}, 1996. \bibitem{comparison} Vladimir Voevodsky. \newblock Motivic cohomology are isomorphic to higher {C}how groups. \newblock {\em www.math.uiuc.edu/K-theory/378}, 1999. \end{thebibliography}