\begin{thebibliography}{1}

\bibitem{Boardman}
J.~M. Boardman.
\newblock The eightfold way to {BP}-operations.
\newblock In {\em Current trends in algebraic topology}, pages 187--226.
  AMS/CMS, Providence, 1982.

\bibitem{delnotes}
Pierre Deligne.
\newblock Voevodsky's lectures on motivic cohomology.
\newblock {\em www.math.ias.edu/{$_{\textstyle
  \tilde{}}\,$}vladimir/seminar.html}, 2000/2001.

\bibitem{Milnor3}
John Milnor.
\newblock The {S}teenrod algebra and its dual.
\newblock {\em Annals of Math.}, 67(1):150--171, 1958.

\bibitem{Milnor}
John Milnor.
\newblock Algebraic {K}-theory and quadratic forms.
\newblock {\em Inv. Math.}, 9:318--344, 1970.

\bibitem{MoVo}
Fabien Morel and Vladimir Voevodsky.
\newblock {${\bf A}^1$}-homotopy theory of schemes.
\newblock {\em Publ. Math. IHES}, (90):45--143, 1999.

\bibitem{SE}
N.~E. Steenrod and D.~B. Epstein.
\newblock {\em Cohomology operations}.
\newblock Princeton Univ. Press, Princeton, 1962.

\bibitem{MC}
Vladimir Voevodsky.
\newblock The {M}ilnor {C}onjecture.
\newblock {\em www.math.uiuc.edu/K-theory/170}, 1996.

\bibitem{comparison}
Vladimir Voevodsky.
\newblock Motivic cohomology are isomorphic to higher {C}how groups.
\newblock {\em www.math.uiuc.edu/K-theory/378}, 1999.

\end{thebibliography}