\begin{thebibliography}{10} \bibitem{SBloch1} S.~Bloch. \newblock The moving lemma for higher {C}how groups. \newblock {\em J. Algebr. Geom.}, 3(3):537--568, Feb. 1994. \bibitem{Boardman} J.~M. Boardman. \newblock The eightfold way to {BP}-operations. \newblock In {\em Current trends in algebraic topology}, pages 187--226. AMS/CMS, Providence, 1982. \bibitem{Mayop} Peter May. \newblock A general algberaic approach to {S}teenrod operations. \newblock In {\em The {S}teenrod algebra and its applications}, volume 168 of {\em Lecture Notes in Math.}, pages 153--231. Springer-Verlag, 1970. \bibitem{MW} Vladimir Voevodsky~Carlo Mazza and Charles Weibel. \newblock {\em Lectures on motivic cohomology, I}. \newblock www.math.ias.edu/{$_{\textstyle \tilde{}}\,$}vladimir/seminar.html, 2001. \bibitem{Milnor3} John Milnor. \newblock The {S}teenrod algebra and its dual. \newblock {\em Annals of Math.}, 67(1):150--171, 1958. \bibitem{Milnor} John Milnor. \newblock Algebraic {$K$}-theory and quadratic forms. \newblock {\em Inv. Math.}, 9:318--344, 1970. \bibitem{MoVo} Fabien Morel and Vladimir Voevodsky. \newblock {${\bf A}^1$}-homotopy theory of schemes. \newblock {\em Publ. Math. IHES}, (90):45--143, 1999. \bibitem{SE} N.~E. Steenrod and D.~B. Epstein. \newblock {\em Cohomology operations}. \newblock Princeton Univ. Press, Princeton, 1962. \bibitem{SusVoe3} Andrei Suslin and Vladimir Voevodsky. \newblock {B}loch-{K}ato conjecture and motivic cohomology with finite coefficients. \newblock In {\em The arithmetic and geometry of algebraic cycles}, pages 117--189. Kluwer, 2000. \bibitem{MC} Vladimir Voevodsky. \newblock The {M}ilnor {C}onjecture. \newblock {\em www.math.uiuc.edu/K-theory/170}, 1996. \bibitem{H3new} Vladimir Voevodsky. \newblock Triangulated categories of motives over a field. \newblock In {\em Cycles, transfers and motivic homology theories}, Annals of Math Studies, pages 188--238. Princeton Univ. Press, 2000. \bibitem{delnotes} Vladimir Voevodsky. \newblock Lectures on motivic cohomology 2000/2001 (written by {P}ierre {D}eligne). \newblock {\em www.math.uiuc.edu/K-theory/527}, 2000/2001. \bibitem{Cancellation} Vladimir Voevodsky. \newblock Cancellation theorem. \newblock {\em www.math.uiuc.edu/K-theory/541}, 2002. \bibitem{comparison} Vladimir Voevodsky. \newblock Motivic cohomology groups are isomorphic to higher {C}how groups in any characteristic. \newblock {\em Int. Math. Res. Not.}, (7):351--355, 2002. \bibitem{MCpub} Vladimir Voevodsky. \newblock Motivic cohomology with ${\bf z}/2$-coefficients. \newblock {\em Pub. IHES}, 2003. \bibitem{collection} Vladimir Voevodsky, Eric~M. Friedlander, and Andrei Suslin. \newblock {\em Cycles, transfers and motivic homology theories}. \newblock Princeton University Press, 2000. \end{thebibliography}