\begin{thebibliography}{10} \bibitem{BT} H.~Bass and J.~Tate. \newblock The {M}ilnor ring of a global field. \newblock In {\em {$K$}-theory {II}}, volume 342 of {\em Lecture Notes in Math.}, pages 349--446. Springer-Verlag, 1973. \bibitem{pairing} A.~Beilinson. \newblock Height pairing between algebraic cycles. \newblock In {\em {$K$}-theory, {A}rithmetic and {G}eometry.}, volume 1289 of {\em Lecture Notes in Math.}, pages 1--26. Springer-Verlag, 1987. \bibitem{Bloch3} S.~Bloch. \newblock {\em Lectures on algebraic cycles}. \newblock Duke Univ. Press, 1980. \bibitem{BL} Spencer Bloch and Stephen Lichtenbaum. \newblock A spectral sequence for motivic cohomology. \newblock {\em www.math.uiuc.edu/K-theory/062}, 1994. \bibitem{Simone} Simone Borghesi. \newblock Algebraic {M}orava {$K$}-theories. \newblock {\em Invent. Math.}, 151(2):381--413, 2003. \bibitem{FS} Eric~M. Friedlander and Andrei Suslin. \newblock The spectral sequence relating algebraic {$K$}-theory to motivic cohomology. \newblock {\em Ann. Sci. \'Ecole Norm. Sup. (4)}, 35(6):773--875, 2002. \bibitem{GL2} Thomas Geisser and Marc Levine. \newblock The ${K}$-theory of fields in characteristic $p$. \newblock {\em Invent. Math.}, 139(3):459--493, 2000. \bibitem{GL} Thomas Geisser and Marc Levine. \newblock The {B}loch-{$K$}ato conjecture and a theorem of {S}uslin-{V}oevodsky. \newblock {\em J. Reine Angew. Math.}, 530:55--103, 2001. \bibitem{Hartshorn} R.~Hartshorne. \newblock {\em Algebraic Geometry}. \newblock Springer-Verlag, Heidelberg, 1971. \bibitem{Jouanolou} J.-P. Jouanolou. \newblock Une suite exacte de {M}ayer-{V}ietoris en {$K$}-theorie algebrique. \newblock {\em Lecture Notes in Math.}, 341:293--317, 1973. \bibitem{Kahn} Bruno Kahn. \newblock La conjecture de {M}ilnor (d'apr\`es {V}. {V}oevodsky). \newblock {\em Ast\'erisque}, (245):Exp.\ No.\ 834, 5, 379--418, 1997. \newblock S\'eminaire Bourbaki, Vol.\ 1996/97. \bibitem{Karpenko} Nikita Karpenko. \newblock Characterization of minimal {P}fister neighbors via {R}ost projectors. \newblock {\em J. Pure Appl. Algebra}, 160:195--227, 2001. \bibitem{Kato} Kazuya Kato. \newblock A generalization of local class field theory by using {K}-groups, {II}. \newblock {\em J. Fac. Sci., Univ Tokyo}, 27:603--683, 1980. \bibitem{Lam} T.~Y. Lam. \newblock {\em The algebraic theory of quadratic forms}. \newblock The Benjamin/Cummings Publ., Reading, MA, 1973. \bibitem{Licht2} Stephen Lichtenbaum. \newblock Values of zeta-functions at non-negative integers. \newblock In {\em Number theory}, volume 1068 of {\em Lecture Notes in Math.}, pages 127--138. Springer-Verlag, 1983. \bibitem{Margolis} H.~R. Margolis. \newblock {\em Spectra and {S}teenrod algebra}. \newblock North-Holland, 1983. \bibitem{MW} Vladimir Voevodsky~Carlo Mazza and Charles Weibel. \newblock {\em Lectures on motivic cohomology}. \newblock www.math.uiuc.edu/K-theory/486, 2002. \bibitem{Merkurjev} Alexander Merkurjev. \newblock On the norm residue symbol of degree {2}. \newblock {\em Sov. Math. Dokl.}, pages 546--551, 1981. \bibitem{MS1} Alexander Merkurjev and Andrei Suslin. \newblock {$K$}-cohomology of {S}everi-{B}rauer varieties and the norm residue homomorphism. \newblock {\em Math. USSR Izvestiya}, 21:307--340, 1983. \bibitem{MS2} Alexander Merkurjev and Andrei Suslin. \newblock The norm residue homomorphism of degree three. \newblock {\em Math. USSR Izvestiya}, 36(2):349--367, 1991. \bibitem{Milnor} John Milnor. \newblock Algebraic {$K$}-theory and quadratic forms. \newblock {\em Inv. Math.}, 9:318--344, 1970. \bibitem{Milnor2} John Milnor. \newblock {\em Introduction to Algebraic {$K$}-theory}. \newblock Princeton Univ. Press, Princeton, NJ, 1971. \bibitem{MoVo} Fabien Morel and Vladimir Voevodsky. \newblock {${\bf A}^1$}-homotopy theory of schemes. \newblock {\em Publ. Math. IHES}, (90):45--143, 1999. \bibitem{Nisnevich} Y.~Nisnevich. \newblock The completely decomposed topology on schemes and associated descent spectral sequences in algebraic {$K$}-theory. \newblock In {\em Algebraic {$K$}-theory: connections with geometry and topology}, pages 241--342. Kluwer Acad. Publ., Dordrecht, 1989. \bibitem{OVV} D.~Orlov, A.~Vishik, and Vladimir Voevodsky. \newblock An exact sequence for {M}ilnor's {$K$}-theory with applications to quadratic forms. \newblock {\em www.math.uiuc.edu/K-theory/0454}, 2000. \bibitem{Rav1} Douglas~C. Ravenel. \newblock {\em Nilpotence and periodicity in stable homotopy theory}. \newblock Ann. of Math. Studies 128. Princeton, 1992. \bibitem{Rost3} Markus Rost. \newblock Hilbert {90} for {$K_3$} for degree-two extensions. \newblock {\em www.math.ohio-state.edu/{$_{\textstyle \tilde{}}\,$}rost/K3-86.html}, 1986. \bibitem{Rost1} Markus Rost. \newblock On the spinor norm and {$A_0(X,K_1)$} for quadrics. \newblock {\em www.math.ohio-state.edu/{$_{\textstyle \tilde{}}\,$}rost/spinor.html}, 1988. \bibitem{Rost2} Markus Rost. \newblock Some new results on the {C}howgroups of quadrics. \newblock {\em www.math.ohio-state.edu/{$_{\textstyle \tilde{}}\,$}rost/chowqudr.html}, 1990. \bibitem{Rost2a} Markus Rost. \newblock The motive of a {P}fister form. \newblock {\em www.math.ohio-state.edu/{$_{\textstyle \tilde{}}\,$}rost/motive.html}, 1998. \bibitem{Suslin4} Andrei Suslin. \newblock Algebraic {$K$}-theory and the norm residue homomorphism. \newblock {\em J. Soviet Math.}, 30:2556--2611, 1985. \bibitem{Suslin3new} Andrei Suslin. \newblock Higher {C}how groups and etale cohomology. \newblock In {\em Cycles, transfers and motivic homology theories}, pages 239--254. Princeton Univ. Press, 2000. \bibitem{SusVoe3} Andrei Suslin and Vladimir Voevodsky. \newblock {B}loch-{K}ato conjecture and motivic cohomology with finite coefficients. \newblock In {\em The arithmetic and geometry of algebraic cycles}, pages 117--189. Kluwer, 2000. \bibitem{Tate} John Tate. \newblock Relations between ${K\sb{2}}$ and {G}alois cohomology. \newblock {\em Invent. Math.}, 36:257--274, 1976. \bibitem{MC0} Vladimir Voevodsky. \newblock {B}loch-{K}ato conjecture for $\zz/2$-coefficients and algebraic {M}orava ${K}$-theories. \newblock {\em www.math.uiuc.edu/K-theory/76}, 1995. \bibitem{MC} Vladimir Voevodsky. \newblock The {M}ilnor {C}onjecture. \newblock {\em www.math.uiuc.edu/K-theory/170}, 1996. \bibitem{talk} Vladimir Voevodsky. \newblock The {$\af$}-homotopy theory. \newblock In {\em Proceedings of the international congress of mathematicians}, volume~1, pages 579--604, Berlin, 1998. \bibitem{H2new} Vladimir Voevodsky. \newblock Cohomological theory of presheaves with transfers. \newblock In {\em Cycles, transfers and motivic homology theories}, Annals of Math Studies, pages 87--137. Princeton Univ. Press, 2000. \bibitem{H3new} Vladimir Voevodsky. \newblock Triangulated categories of motives over a field. \newblock In {\em Cycles, transfers and motivic homology theories}, Annals of Math Studies, pages 188--238. Princeton Univ. Press, 2000. \bibitem{delnotes} Vladimir Voevodsky. \newblock Lectures on motivic cohomology 2000/2001 (written by {P}ierre {D}eligne). \newblock {\em www.math.uiuc.edu/K-theory/527}, 2000/2001. \bibitem{comparison} Vladimir Voevodsky. \newblock Motivic cohomology groups are isomorphic to higher {C}how groups in any characteristic. \newblock {\em Int. Math. Res. Not.}, (7):351--355, 2002. \bibitem{Red} Vladimir Voevodsky. \newblock Reduced power operations in motivic cohomology. \newblock {\em Publ. IHES}, 2003. \bibitem{collection} Vladimir Voevodsky, Eric~M. Friedlander, and Andrei Suslin. \newblock {\em Cycles, transfers and motivic homology theories}. \newblock Princeton University Press, 2000. \end{thebibliography}