\begin{thebibliography}{10}

\bibitem{BT}
H.~Bass and J.~Tate.
\newblock The {M}ilnor ring of a global field.
\newblock In {\em {$K$}-theory {II}}, volume 342 of {\em Lecture Notes in
  Math.}, pages 349--446. Springer-Verlag, 1973.

\bibitem{pairing}
A.~Beilinson.
\newblock Height pairing between algebraic cycles.
\newblock In {\em {$K$}-theory, {A}rithmetic and {G}eometry.}, volume 1289 of
  {\em Lecture Notes in Math.}, pages 1--26. Springer-Verlag, 1987.

\bibitem{Bloch3}
S.~Bloch.
\newblock {\em Lectures on algebraic cycles}.
\newblock Duke Univ. Press, 1980.

\bibitem{BL}
Spencer Bloch and Stephen Lichtenbaum.
\newblock A spectral sequence for motivic cohomology.
\newblock {\em www.math.uiuc.edu/K-theory/062}, 1994.

\bibitem{Simone}
Simone Borghesi.
\newblock Algebraic {M}orava {$K$}-theories.
\newblock {\em Invent. Math.}, 151(2):381--413, 2003.

\bibitem{FS}
Eric~M. Friedlander and Andrei Suslin.
\newblock The spectral sequence relating algebraic {$K$}-theory to motivic
  cohomology.
\newblock {\em Ann. Sci. \'Ecole Norm. Sup. (4)}, 35(6):773--875, 2002.

\bibitem{GL2}
Thomas Geisser and Marc Levine.
\newblock The ${K}$-theory of fields in characteristic $p$.
\newblock {\em Invent. Math.}, 139(3):459--493, 2000.

\bibitem{GL}
Thomas Geisser and Marc Levine.
\newblock The {B}loch-{$K$}ato conjecture and a theorem of
  {S}uslin-{V}oevodsky.
\newblock {\em J. Reine Angew. Math.}, 530:55--103, 2001.

\bibitem{Hartshorn}
R.~Hartshorne.
\newblock {\em Algebraic Geometry}.
\newblock Springer-Verlag, Heidelberg, 1971.

\bibitem{Jouanolou}
J.-P. Jouanolou.
\newblock Une suite exacte de {M}ayer-{V}ietoris en {$K$}-theorie algebrique.
\newblock {\em Lecture Notes in Math.}, 341:293--317, 1973.

\bibitem{Kahn}
Bruno Kahn.
\newblock La conjecture de {M}ilnor (d'apr\`es {V}. {V}oevodsky).
\newblock {\em Ast\'erisque}, (245):Exp.\ No.\ 834, 5, 379--418, 1997.
\newblock S\'eminaire Bourbaki, Vol.\ 1996/97.

\bibitem{Karpenko}
Nikita Karpenko.
\newblock Characterization of minimal {P}fister neighbors via {R}ost
  projectors.
\newblock {\em J. Pure Appl. Algebra}, 160:195--227, 2001.

\bibitem{Kato}
Kazuya Kato.
\newblock A generalization of local class field theory by using {K}-groups,
  {II}.
\newblock {\em J. Fac. Sci., Univ Tokyo}, 27:603--683, 1980.

\bibitem{Lam}
T.~Y. Lam.
\newblock {\em The algebraic theory of quadratic forms}.
\newblock The Benjamin/Cummings Publ., Reading, MA, 1973.

\bibitem{Licht2}
Stephen Lichtenbaum.
\newblock Values of zeta-functions at non-negative integers.
\newblock In {\em Number theory}, volume 1068 of {\em Lecture Notes in Math.},
  pages 127--138. Springer-Verlag, 1983.

\bibitem{Margolis}
H.~R. Margolis.
\newblock {\em Spectra and {S}teenrod algebra}.
\newblock North-Holland, 1983.

\bibitem{MW}
Vladimir Voevodsky~Carlo Mazza and Charles Weibel.
\newblock {\em Lectures on motivic cohomology}.
\newblock www.math.uiuc.edu/K-theory/486, 2002.

\bibitem{Merkurjev}
Alexander Merkurjev.
\newblock On the norm residue symbol of degree {2}.
\newblock {\em Sov. Math. Dokl.}, pages 546--551, 1981.

\bibitem{MS1}
Alexander Merkurjev and Andrei Suslin.
\newblock {$K$}-cohomology of {S}everi-{B}rauer varieties and the norm residue
  homomorphism.
\newblock {\em Math. USSR Izvestiya}, 21:307--340, 1983.

\bibitem{MS2}
Alexander Merkurjev and Andrei Suslin.
\newblock The norm residue homomorphism of degree three.
\newblock {\em Math. USSR Izvestiya}, 36(2):349--367, 1991.

\bibitem{Milnor}
John Milnor.
\newblock Algebraic {$K$}-theory and quadratic forms.
\newblock {\em Inv. Math.}, 9:318--344, 1970.

\bibitem{Milnor2}
John Milnor.
\newblock {\em Introduction to Algebraic {$K$}-theory}.
\newblock Princeton Univ. Press, Princeton, NJ, 1971.

\bibitem{MoVo}
Fabien Morel and Vladimir Voevodsky.
\newblock {${\bf A}^1$}-homotopy theory of schemes.
\newblock {\em Publ. Math. IHES}, (90):45--143, 1999.

\bibitem{Nisnevich}
Y.~Nisnevich.
\newblock The completely decomposed topology on schemes and associated descent
  spectral sequences in algebraic {$K$}-theory.
\newblock In {\em Algebraic {$K$}-theory: connections with geometry and
  topology}, pages 241--342. Kluwer Acad. Publ., Dordrecht, 1989.

\bibitem{OVV}
D.~Orlov, A.~Vishik, and Vladimir Voevodsky.
\newblock An exact sequence for {M}ilnor's {$K$}-theory with applications to
  quadratic forms.
\newblock {\em www.math.uiuc.edu/K-theory/0454}, 2000.

\bibitem{Rav1}
Douglas~C. Ravenel.
\newblock {\em Nilpotence and periodicity in stable homotopy theory}.
\newblock Ann. of Math. Studies 128. Princeton, 1992.

\bibitem{Rost3}
Markus Rost.
\newblock Hilbert {90} for {$K_3$} for degree-two extensions.
\newblock {\em www.math.ohio-state.edu/{$_{\textstyle
  \tilde{}}\,$}rost/K3-86.html}, 1986.

\bibitem{Rost1}
Markus Rost.
\newblock On the spinor norm and {$A_0(X,K_1)$} for quadrics.
\newblock {\em www.math.ohio-state.edu/{$_{\textstyle
  \tilde{}}\,$}rost/spinor.html}, 1988.

\bibitem{Rost2}
Markus Rost.
\newblock Some new results on the {C}howgroups of quadrics.
\newblock {\em www.math.ohio-state.edu/{$_{\textstyle
  \tilde{}}\,$}rost/chowqudr.html}, 1990.

\bibitem{Rost2a}
Markus Rost.
\newblock The motive of a {P}fister form.
\newblock {\em www.math.ohio-state.edu/{$_{\textstyle
  \tilde{}}\,$}rost/motive.html}, 1998.

\bibitem{Suslin4}
Andrei Suslin.
\newblock Algebraic {$K$}-theory and the norm residue homomorphism.
\newblock {\em J. Soviet Math.}, 30:2556--2611, 1985.

\bibitem{Suslin3new}
Andrei Suslin.
\newblock Higher {C}how groups and etale cohomology.
\newblock In {\em Cycles, transfers and motivic homology theories}, pages
  239--254. Princeton Univ. Press, 2000.

\bibitem{SusVoe3}
Andrei Suslin and Vladimir Voevodsky.
\newblock {B}loch-{K}ato conjecture and motivic cohomology with finite
  coefficients.
\newblock In {\em The arithmetic and geometry of algebraic cycles}, pages
  117--189. Kluwer, 2000.

\bibitem{Tate}
John Tate.
\newblock Relations between ${K\sb{2}}$ and {G}alois cohomology.
\newblock {\em Invent. Math.}, 36:257--274, 1976.

\bibitem{MC0}
Vladimir Voevodsky.
\newblock {B}loch-{K}ato conjecture for $\zz/2$-coefficients and algebraic
  {M}orava ${K}$-theories.
\newblock {\em www.math.uiuc.edu/K-theory/76}, 1995.

\bibitem{MC}
Vladimir Voevodsky.
\newblock The {M}ilnor {C}onjecture.
\newblock {\em www.math.uiuc.edu/K-theory/170}, 1996.

\bibitem{talk}
Vladimir Voevodsky.
\newblock The {$\af$}-homotopy theory.
\newblock In {\em Proceedings of the international congress of mathematicians},
  volume~1, pages 579--604, Berlin, 1998.

\bibitem{H2new}
Vladimir Voevodsky.
\newblock Cohomological theory of presheaves with transfers.
\newblock In {\em Cycles, transfers and motivic homology theories}, Annals of
  Math Studies, pages 87--137. Princeton Univ. Press, 2000.

\bibitem{H3new}
Vladimir Voevodsky.
\newblock Triangulated categories of motives over a field.
\newblock In {\em Cycles, transfers and motivic homology theories}, Annals of
  Math Studies, pages 188--238. Princeton Univ. Press, 2000.

\bibitem{delnotes}
Vladimir Voevodsky.
\newblock Lectures on motivic cohomology 2000/2001 (written by {P}ierre
  {D}eligne).
\newblock {\em www.math.uiuc.edu/K-theory/527}, 2000/2001.

\bibitem{comparison}
Vladimir Voevodsky.
\newblock Motivic cohomology groups are isomorphic to higher {C}how groups in
  any characteristic.
\newblock {\em Int. Math. Res. Not.}, (7):351--355, 2002.

\bibitem{Red}
Vladimir Voevodsky.
\newblock Reduced power operations in motivic cohomology.
\newblock {\em Publ. IHES}, 2003.

\bibitem{collection}
Vladimir Voevodsky, Eric~M. Friedlander, and Andrei Suslin.
\newblock {\em Cycles, transfers and motivic homology theories}.
\newblock Princeton University Press, 2000.

\end{thebibliography}