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Abstract

C-systems were introduced by J. Cartmell under the name “contextual categories”. In this
note we study sub-objects and quotient-objects of C-systems. In the case of the sub-objects we
consider all sub-objects while in the case of the quotient-objects only regular quotients that in
particular have the property that the corresponding projection morphism is surjective both on
objects and on morphisms.

It is one of several short papers based on the material of the ”Notes on Type Systems” by
the same author.

1 Introduction

C-systems where introduced by John Cartmell ([1], [2, p.237]) and studied further by Thomas
Streicher (see [3, Def. 1.2, p.47]). Both authors used the name contextual categories for these
structures. We feel it to be important to use the word “category” only for constructions which are
invariant under equivalences of categories. For the essentially algebraic structure with two sorts
“morphisms” and “objects” and operations “source”, “target”, “identity” and “composition” we
suggest to use the word pre-category. Since the additional structures introduced by Cartmell are
not invariant under equivalences we can not say that they are structures on categories but only
that they are structures on pre-categories. Correspondingly, Cartmell objects should be called
“contextual pre-categories”. We suggest to use the name C-systems instead.

Our first result, Proposition 2.3, shows that C-systems can be defined in two equivalent ways: one,
as was originally done by Cartmell, using the condition that certain squares are pull-back and
another using a new operation f 7! sf which is almost everywhere defined and satisfies simple
algebraic conditions.

This description is useful for the study of quotients and homomorphisms of C-systems.

To any C-system CC we associate a set fOb(CC) and eight partially defined operations on the pair

of sets (Ob(CC), fOb(CC)).

In Proposition 4.3 we construct a bijection between C-subsystems of a given C-system CC and
pairs of subsets (C, eC) in (Ob(CC), fOb(CC) which are closed under the eight operations.

In Proposition 5.4 we construct a bijection between regular congruence relations on CC and pairs
of equivalence relations on (Ob(CC), fOb(CC) which are compatible with the eight operations and
satisfy some additional properties.

These two results strongly suggest that the theory of C-systems is equivalent to the theory with
the sorts (Ob, fOb) and the eight operations which we consider together with some relations among
these operations.
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The essentially algebraic version of this other theory is called the theory of B-systems and will be
consider in the sequel [5].

This is one of the short papers based on the material of [4] by the same author. I would like
to thank the Institute Henri Poincare in Paris and the organizers of the “Proofs” trimester for
their hospitality during the preparation of this paper. The work on this paper was facilitated by
discussions with Richard Garner and Egbert Rijke.

2 C-systems

By a pre-category C we mean a pair of sets Mor(C) and Ob(C) with four maps

@0, @1 : Mor(C) ! Ob(C)

Id : Ob(C) ! Mor(C)

and
� : Mor(C)@1 ⇥@0 Mor(C) ! Mor(C)

which satisfy the well known conditions of unity and associativity (note that we write composition
of morphisms in the form f � g or fg where f : X ! Y and g : Y ! Z). These objects would be
usually called categories but we reserve the name “category” for those uses of these objects that
are invariant under the equivalences.

Definition 2.1 A C0-system is a pre-category CC with additional structure of the form

1. a function l : Ob(CC) ! N,

2. an object pt,

3. a map ft : Ob(CC) ! Ob(CC),

4. for each X 2 Ob(CC) a morphism pX : X ! ft(X),

5. for each X 2 Ob(CC) such that l(X) > 0 and each morphism f : Y ! ft(X) an object f⇤X
and a morphism q(f,X) : f⇤X ! X,

which satisfies the following conditions:

1. l�1(0) = {pt}

2. for X such that l(X) > 0 one has l(ft(X)) = l(X)� 1

3. ft(pt) = pt

4. pt is a final object,

5. for X 2 Ob(CC) such that l(X) > 0 and f : Y ! ft(X) one has ft(f⇤X) = Y and the
square

f⇤X
q(f,X)����! X

pf⇤X

??y
??ypX

Y
f���! ft(X)

(1)

commutes,
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6. for X 2 Ob(CC) such that l(X) > 0 one has id⇤ft(X)(X) = X and q(idft(X), X) = idX ,

7. for X 2 Ob(CC) such that l(X) > 0, g : Z ! Y and f : Y ! ft(X) one has (gf)⇤(X) =
g⇤(f⇤(X)) and q(gf,X) = q(g, f⇤X)q(f,X).

For f : X ! Y in CC we let ft(f) : X ! ft(Y ) denote the composition f � pY .

Definition 2.2 A C-system is a C0-system together with an operation f 7! sf defined for all
f : X ! Y such that l(Y ) > 0 and such that

1. sf : X ! (ft(f))⇤(Y ),

2. sf � p(ft(f))⇤(Y ) = IdX ,

3. f = sf � q(ft(f), Y ),

4. if Y = g⇤(Z) where g : ft(Y ) ! ft(Z) then sf = sf�q(g,Z).

Proposition 2.3 Let CC be a C0-system. Then the following are equivalent:

1. the canonical squares (1) of CC are pull-back squares,

2. there is given a structure of a C-system on CC.

Proof: Let us show first that if we are given an operation f 7! sf satisfying the conditions of
Definition 2.2 then the canonical squares of CC are pull-back squares.

Let l(X) > 0 and f : Y ! ft(X). We want to show that for any Z the map

(g : Z ! f⇤(X)) 7! (ft(g), g � q(f,X))

is injective and that for any g1 : Z ! Y , g2 : Z ! X such that g1 � f = ft(g2) there exists a unique
g : Z ! Y such that ft(g) = g1 and g � q(f,X) = g2.

Let g, g0 : Z ! f⇤(X) be such that ft(g) = ft(g0) and g � q(f,X) = g0 � q(f,X). Then

g = sg � q(ft(g), f⇤(X)) = sg�q(f,X) � q(ft(g), f⇤(X)) =

sg0�q(f,X) � q(ft(g0), f⇤(X)) = sg0 � q(ft(g0), f⇤(X)) = g0.

If we are given g1, g2 as above let g = sg2 � q(g1, f⇤(X)). Then:

ft(g) = sg2 � ft(q(g1, f⇤(X))) = sg2 � pg⇤1(f⇤(X)) � g1 = g1

g � q(f,X) = sg2 � q(g1, f⇤(X)) � q(f,X) = sg2 � q(g1 � f,X) = sg2 � q(ft(g2), X) = g2.

If on the other hand the canonical squares of CC are pull-back then we can define the operation
sf in the obvious way and moreover such an operation is unique because of the uniqueness part of
the definition of pull-back. This implies the assertion of the proposition.
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Remark 2.4 Note that the additional structure on a pre-category which defines a C0-system is
not an additional essentially algebraic structure. Indeed, the pre-category underlying the product
of two C0-systems (defined as the categorical product in the category of C0-systems and their
“homomorphisms”) is not the product of the underlying pre-categories but a sub-pre-category in this
product which consists of pairs of objects (X,Y ) such that l(X) = l(Y ). This gives another reason
for our suggestion to use the name C0-systems ands C-systems instead of the name “contextual
categories”.

Remark 2.5 Let
Obn(CC) = {X 2 Ob(CC) | l(X) = n}

Morn,m(CC) = {f : Mor(CC)|@0(f) 2 Obn and @1(f) 2 Obm}.

One can reformulate the definitions of C0-systems and C-systems using Obn(CC) and Morn,m(CC)
as the underlying sets together with the obvious analogs of maps and conditions of the definition
given above. In this reformulation there will be no use of the function l and of the condition
l(X) > 0.

This shows that C0-systems and C-systems can be considered as models of algebraic theories with
sorts Obn, and Morn,m and in particular all the results of [3] are applicable to C-systems.

Remark 2.6 Note also that as defined C0-systems and C-systems can not be described, in general,
by generators and relations. For example, for is a C0-system generated by X 2 Ob? There is no
such universal object because we do not know what is l(X).

This problem is, of course, eliminated by using the definition with two infinite families of sorts Obn
and Morn,m.

3 The set

fOb of a C-system.

For a C-system CC denote by fOb(CC) the subset of Mor(CC) which consists of elements s of the

form s : ft(X) ! X where l(X) > 0 and such that s � pX = Idft(X). In other words, fOb is the set
of sections of the canonical projections pX for X such that l(X) > 0.

For X 2 Ob(CC) and i � 0 such that l(X) � i denote by pX,i the composition of the canonical
projections X ! ft(X) ! . . . ! fti(X) such that pX,0 = IdX and for l(X) > 0, pX,1 = pX . If
l(X) < i we will consider pX,i to be undefined. All of the considerations involving pX,i’s below are
modulo the qualification that pX,i is defined, i.e., that l(X) � i.

For X such that l(X) � i and f : Y ! fti(X) denote by f⇤(X, i) the objects and by q(f,X, i) :
f⇤(X, i) ! X the morphisms defined inductively by the rule

f⇤(X, 0) = Y q(f,X, 0) = f,

f⇤(X, i+ 1) = q(f, ft(X), i)⇤(X) q(f,X, i+ 1) = q(q(f, ft(X), i), X).

If l(X) < i, then q(f,X, i) is undefined since q(�, X) is undefined for X = pt and again, as in the
case of pX,i, all of the considerations involving q(f,X, i) are modulo the qualification that l(X) � i.

For i � 1, (s : ft(X) ! X) 2 fOb such that l(X) � i, and f : Y ! fti(X) let

f⇤(s, i) : f⇤(ft(X), i� 1) ! f (ft(X), i)
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be the pull-back of the section ft(X) ! X along the morphism q(f, ft(X), i � 1). We again use
the agreement that always when f⇤(s, i) is used the condition l(X) � i is part of the assumptions.

Consider the following operations on the pair of sets Ob = Ob(CC) and fOb = fOb(CC):

1. pt 2 Ob,

2. ft : Ob ! Ob,

3. @ : fOb ! Ob of the form (s : ft(X) ! X) 7! X,

4. T which is defined on pairs (Y,X) 2 Ob⇥Ob such that l(Y ) > 0 and there exists (a necessarily
unique) i � 1 with ft(Y ) = fti(X) and T (Y,X) = p⇤Y (X, i),

5. eT which is defined on pairs (Y, (r : ft(X) ! X)) 2 Ob ⇥ fOb such that l(Y ) > 0 and there
exists (a necessarily unique) i � 1 such that ft(Y ) = fti(X) and eT (Y, r) = p⇤Y (r, i),

6. S which is defined on pairs ((s : ft(Y ) ! Y ), X) 2 fOb ⇥ Ob such that there exists (a
necessarily unique) i � 1 such that Y = fti(X) and S(s,X) = s⇤(X, i),

7. eS which is defined on pairs ((s : ft(Y ) ! Y ), (r : ft(X) ! X)) 2 fOb ⇥ fOb such that there
exists (a necessarily unique) i � 1 such that Y = fti(X) and eS(s, r) = s⇤(r, i),

8. � which is defined on elementsX 2 Ob such that l(X) > 0 and �(X) 2 fOb is spX : X ! p⇤X(X).

4 C-subsystems.

A C-subsystem CC 0 of a C-system CC is a sub-pre-category of the underlying pre-category which
is closed, in the obvious sense under the operations which define the C-system on CC.

A C-subsystem is itself a C-system with respect to the induced structure.

Lemma 4.1 Let CC be a C-system and CC 0, CC 00 be two C-subsystems such that Ob(CC 0) =

Ob(CC 00) (as subsets of Ob(CC)) and fOb(CC 0) = fOb(CC 00) (as subsets of fOb(CC)). Then CC 0 =
CC 00.

Proof: Let f : Y ! X be a morphism in CC 0. We want to show that it belongs to CC 00. Proceed
by induction on m = l(X). For m = 0 the assertion is obvious. Suppose that m > 0. Since CC 0 is
a C-subsystem we have a commutative diagram

Y

sf

??y

(f � pX)⇤X
q(f�pX ,X)������! X

??y
??ypX

Y
f�pX���! ft(X)

(2)

in CC 0 such that f = sf q(pXf,X). By the inductive assumption the square is a canonical pull-back

square in CC 00 as well. Since eob(CC 0) = eob(CC 00) we have sf 2 CC 00 and therefore f 2 CC 00.
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Remark 4.2 In Lemma 4.1, it is su�cient to assume that fOb(CC 0) = fOb(CC 00). The condition
Ob(CC 0) = Ob(CC 00) is then also satisfied. Indeed, let X 2 Ob(CC 0) and l(X) > 0. Then p⇤XX
is the product X ⇥ X in CC. Consider the diagonal section �X : X ! p⇤XX of pp⇤X(X). Since

CC 0 is assumed to be a C-subsystem we conclude that �X 2 fOb(CC 0) = fOb(CC 00) and therefore
X 2 Ob(CC 00). It is however more convenient to think of C-subsystems in terms of subsets of both

Ob and fOb.

Proposition 4.3 A pair (C, eC) where C ⇢ ob(CC) and eC ⇢ fOb(CC) corresponds to a C-subsystem
of CC if and only if the following conditions hold:

1. pt 2 C,

2. if X 2 C then ft(X) 2 C,

3. if s 2 eC then @(s) 2 C,

4. if Y 2 C and r 2 eC then eT (Y, r) 2 eC,

5. if s 2 eC and r 2 eC then eS(s, r) 2 eC,

6. if X 2 C then �(X) 2 eC.

Conditions (4) and (5) are illustrated by the following diagrams:

p⇤Y (ft(X), i� 1)
q(pY ,ft(X),i�1)����������! ft(X)

??yq(pY ,ft(X),i�1)⇤(r)

??yr

p⇤Y (X, i)
q(pY ,X,i)������! X

??y
??ypX

p⇤Y (ft(X), i� 1)
q(pY ,ft(X),i�1)����������! ft(X)

??y
??y

. . . . . .
??y

??y

Y
pY���! fti(X)

s⇤(ft(X), i� 1)
q(s,ft(X),i�1)���������! ft(X)

??yq(s,ft(X),i�1)⇤(r)

??yr

s⇤(X, i)
q(s,X,i)����! X

??y
??ypX

s⇤(ft(X), i� 1)
q(s,ft(X),i�1)���������! ft(X)

??y
??y

. . . . . .
??y

??y

fti+1(X)
s���! fti(X)

Proof: The ”only if” part of the proposition is straightforward. Let us prove that for any (C, eC)
satisfying the conditions of the proposition there exists a C-subsystem CC 0 of CC such that C =
Ob(CC 0) and eC = fOb(CC 0).

Define a candidate subcategory CC 0 setting Ob(CC 0) = C and defining the set Mor(CC 0) of
morphisms of CC 0 inductively by the conditions:

1. Y ! pt is in Mor(CC 0) if and only if Y 2 C,

2. f : Y ! X is in Mor(CC 0) if and only if X 2 C, ft(f) 2 Mor(CC 0) and sf 2 eC.
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(note that the for (f : Y ! X) 2 Mor(CC 0) one has Y 2 C since sf : Y ! Xf ).

Let us show that if the conditions of the proposition are satisfied then (Ob(CC 0),Mor(CC 0)) form
a C-subsystem of CC.

The subset Ob(CC 0) contains pt and is closed under ft map by the first two conditions. The
following lemma shows that Mor(CC 0) contains identities and the compositions of the canonical
projections.

Lemma 4.4 Under the assumptions of the proposition, if X 2 C and i � 0 then pX,i : X ! fti(X)
is in Mor(CC 0).

Proof: Let l(X) = n. Then pX,n 2 Mor(CC 0) by the first constructor of Mor(CC 0). By induction
it remains to show that if X 2 C and pX,i 2 Mor(CC 0) then pX,i�1 2 Mor(CC 0). We have
ft(pX,i�1) = pX,i and spX,i�1 is the pull-back of the diagonal fti�1(X) ! (pfti�1(X))

⇤(fti�1(X))

with respect to pX,i�1 : X ! fti�1(X). The diagonal is in eC by condition (6) and therefore spX,i�1

is in eC by repeated application of condition (4).

Lemma 4.5 Under the assumptions of the proposition, let (r : ft(X) ! X) 2 eC, i � 1, and
(f : Y ! fti(X)) 2 Mor(CC 0). Then f⇤(s, i) : ft(f⇤(X, i)) ! f⇤(X, i) is in Mor(CC 0).

Proof: Suppose first that fti(X) = pt. Then f = pY,n for some n and the statement of the
lemma follows from repeated application of condition (4). Suppose that the lemma is proved for
all morphisms to objects of length j � 1 and let the length of fti(X) be j. Consider the canonical
decomposition f = sfqf . The morphism qf is the canonical pull-back of ft(f) and therefore the

pull-back of s relative to qf coincides with its pull-back relative to ft(f) which is eC by the inductive

assumption. The pull-back of an element of eC with respect to sf is in eC by condition (5).

Lemma 4.6 Under the assumptions of the proposition, let g : Z ! Y and f : Y ! X be in
Mor(CC 0). Then gf 2 Mor(CC 0).

Proof: If X = pt the the statement is obvious. Assume that it is proved for all f whose codomain is
of length < j and let X be of length j. We have ft(gf) = g ft(f) and therefore ft(gf) 2 Mor(CC 0)
by the inductive assumption. It remains to show that sgf 2 eC. We have the following diagram
whose squares are canonical pull-back squares

Xgf ���! Xf ���! X
??y

??y
??ypX

Z
g���! Y

ft(f)���! ft(X)

which shows that sgf = g⇤(sf ). Therefore, sgf 2 Mor(CC 0) by Lemma 4.5.

Lemma 4.7 Under the assumptions of the proposition, let X 2 C and let f : Y ! ft(X) be in
Mor(CC 0), then f⇤(X) 2 C and q(f,X) 2 Mor(CC 0).
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Proof: Consider the diagram

f⇤(X)
q(f,X)����! X

sq(f,X)

??y
??ysIdX

q(f,X)⇤(X) ���! p⇤X(X) ���! X
??y

??y
??y

f⇤(X)
q(f,X)����! X ���! ft(X)

pf⇤(X)

??y
??ypX

Y
f���! ft(X)

where the squares are canonical. By condition (6) we have sId 2 eC. Therefore, by Lemma 4.5, we
have sq(f,X) 2 eC. In particular, q(f,X)⇤(X) 2 C and therefore f⇤(X) = ft(q(f,X)⇤(X)) 2 C. The

fact that q(f,X) 2 Mor(CC 0) follows from the fact that sq(f,X) 2 eC and ft(q(f,X)) = pf⇤(X)f is
in Mor(CC 0) by previous lemmas.

Lemma 4.8 Under the assumptions of Lemma 4.7, the square

f⇤(X)
q(f,X)����! X

pf⇤(X)

??y
??ypX

Y
f���! ft(X)

is a pull-back square in CC 0.

Proof: We need to show that for a morphism g : Z ! f⇤(X) such that gpf⇤(X) and gq(f,X) are in
Mor(CC 0) one has g 2 Mor(CC 0). We have ft(g) = gpf⇤(X), therefore by definition of Mor(CC 0)

it remains to check that sg 2 eC. The diagram of canonical pull-back squares

(f⇤Y )g ���! f⇤Y
q(f,X)����! X

??y
??y

??y

Z
ft(g)���! Y

f���! ft(X)

shows that sg = sgq(f,X) and therefore sg 2 Mor(CC 0).

To finish the proof of the proposition it remains to show that Ob(CC 0) = C and fOb(CC 0) = eC.
The first assertion is tautological. The second one follows immediately from the fact that for
(s : ft(X) ! X) 2 fOb(CC) one has ft(s) = Idft(X) and ss = s.

5 Regular congruence relations on C-systems

Definition 5.1 Let CC be a C-system. A regular congruence relation on CC is a pair of equiva-
lence relations ⇠Ob,⇠Mor on Ob(CC) and Mor(CC) respectively such that:
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[4] Vladimir Voevodsky. Notes on type systems. https: // github. com/ vladimirias/ old_

notes_ on_ type_ systems , 2009-2012.
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Notes

Annotations created using iAnnotate on the iPad. Branchfire • www.branchfire.com

Wrong reference. [3] is the Palmgren-Vickers paper referred to in Remark 2.5. This one should be "Semantics of type 
theory".1-2

Not completely new. s_f is introduced in Cartmell's thesis (p. 2.19) as 'f'.1-3

What do pt and ft stand for?2-1

Beware! ft is not a functor.3-1

X and Y in diagram (1) have now switched their roles, slightly confusing.3-2

is there4-1

f*(X,i)4-2

It seems to me that s_{p_X} should be s_{Id_X}.

Remark 42 refers to δ_X (not δ(X)) explicitly as the second of these.

In 4.7 δ_X is implicitly referred to as s_Id.

If is_{p_X} is right, then the codomain is p_{X,2}*(ft(X)).

5-1

Ob?5-4

The notation is not systematic. C is got from CC by removing a C, CC' is got by adding a prime.6-2

This notation seems to be new, X_f = ft(f)*(X).7-2

Are these meant to be the same?7-3

in7-4

p*_X(X)8-1

X8-5

Streicher "Semantics of type theory"11-1
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