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1 Introduction

2 The standard cd-structures on the category of G-
schemes

Let S be a Noetherain scheme and G be a group scheme over S. We define the
standard cd-structures on the category of G-schemes through the forgetful
functor to the category of schemes. That is, a square of GG-schemes is called
upper distinguished, lower distinguished, plain upper distinguished or plain
lower distinguished if it is of the corresponding type when considered as a
square of schemes without a G-action. Since the forgetful functor commutes
with the fiber products Lemma 77 implies that the standard cd-structures are
complete and Lemma 7?7 that they are regular. Define the standard density
structure on G-schemes through the forgetful functor as well. The equivariant
dimension of a G-scheme is always less or equal to the non equivariant one.
If Z is an invariant subset of a G-scheme X and p : X — Y is a G-morphism
then the image of A is invariant. If Z is an invariant subset of a G-scheme
X then the closure ¢l(Z) of Z is invariant. Finally if Z is an invariant
closed subset of a G-scheme X then there exists a unique G-action on the
complement X —Z such that X —Z — X is a morphism of G-schemes. These
statements imply that the proof of Proposition 77 can be transfered without
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change to the equivariant case. To transfer the proof of Proposition 7?7 we
need to know that for an equivariant morphism f : Y — X of finite type
the scheme-theoretic image Spec(ker(Ox — f.Oy)) of f has a canonical
structure of a G-scheme. This follows immediately from the definition if G
is flat over S. We proved the following result.

Proposition 2.1 Jeqcasel/ The standard cd-structures on the category of
G-schemes over S are complete and reqular. The upper and plain upper cd-
structures are bounded by the standard density structure for any G. The lower
and plain lower cd-structures are bounded by the standard density structure

if G is flat over S.

Remark 2.2 We do not know of any example of a groups scheme G such
that the lower cd-structure on G-schemes is not bounded by the standard
density structure.

We will need a criterion for an etale G-morphism to be a covering in the
upper cd-topology and for a proper morphism to be a covering in the lower
cd-topology.

Definition 2.3 [uppersplit/ Let f : X — X be a morphism of G-schemes.
A splitting sequence for f is a sequence of closed embeddings of G-schemes

V=Zp1—>Zy— ...~ 21— Zy=X
such that for any i =0, ...,n the projection
(Zi = Ziy1) Xx X - (Zi = Ziy1)
has a section (in the category of G-schemes).

Proposition 2.4 fupperchar/ Let G be a flat group scheme. Then an etale
G-morphism f: X — X is a covering in the upper cd-topology if and only if
it has a splitting sequence.

Proof: We start with the following lemma. Its proof was suggested by P.
Deligne.

Lemma 2.5 [complement/ Let G be a flat group scheme and Z be an in-
variant closed subset of a G-scheme X. Then there exists a G-scheme Z'
and a closed embedding i : Z' — X such that Im(i) = Z.
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Proof: Consider Z as a scheme with the reduced structure. The morphism
fGxsZ —-Gxg X —X

where the last arrow is the action is a G-equivariant morphism with respect
to the action of G on G x Z through the first factor. We can now take Z’
to be the scheme-theoretic image of f i.e. Z' = Spec(ker(Ox — f.Ogxsz)).
Since G is flat Z’ has a canonical action of G.

The proof of the “only if” part is parallel, modulo Lemma 2.5, to the proof
of the similar result in the non equivariant case given in [1, Lemma 3.1.5].

Lemma 2.6 /hasdense/ If f : X — X is an upper cd-covering then there
exists an open embedding j : U — X with dense image and a section of f
over U.

Proof: We work in the category of G-schemes. Using the fact that the upper
cd-structure is complete we may assume that f = [[ f; where {)N(i — X} is
a simple covering. By induction we may assume further that our covering
is of the form {Y; & YV — X,flj DA X} where [Ip; and [[g; have
sections over dense open subschemes Y, Ay of Y and A respectively and
Y — X and A — X are two sides of an upper distinguished square of the
form (?7?). An open subset of X is dense if it belongs to D;(X) defined by the
standard density structure. Using the fact that any upper square is reducing
and applying the definition of a reducing square for Yy, Ay and By = () we
conclude that there is a dense open subset U of X such that f has a section
over U.

Let f: X — X be an upper cd-covering. To find a splitting sequence for
f take a dense open subset U of X such that f has a section over U. Let
Zy — Zy = X be a closed embedding of G-schemes whose image is X — U.
Consider the pull-back of f to Z; and apply again Lemma 2.6. One gets a
sequence of closed embeddings Z;,; — Z; — ... — X such that Z,,; — Z;
is dense in Z;;; and in particular non empty. Since X is Noetherain this
sequence must stabilize giving a finite splitting sequence for f. This proofs
the “only if” part.

To prove the “if” part consider an etale morphism f : X — X with
a splitting sequence 7, — ... — Z; = X. We will construct an upper
distinguished square of the form (??) based on X such that the pull-back of
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f to Y has a section and the pull-back of f to A has a splitting sequence
of length less than n. The result then follows by induction on n. We take
A= X -7, Todefine Y consider the section s of f, : X X x Zn — 2, which
exists by definition of a splitting sequence. Since f is etale and in particular
unramified the image of s is an open subscheme. Let W be its complement.
The morphism X Xy Z, — X is a closed embedding thus the image of W
is closed in X. We take Y = X — W. One verifies immediately that the
pull-back square defined by A — X and Y — X is upper distinguished. The
pull-back of f to Y has a section and the pull-back of f to A has a splitting
sequence of length n — 1. This finishes the proof of the proposition.

Proposition 2.7 [lowerchar/ Let G be a flat group scheme. A proper mor-
phism of G-schemes f : X — X is a lower cd-covering if and only if it has a
splitting sequence.

Proof: The proof of the “only if” part is parallel to the proof given for the
upper case in Proposition 2.4 with the following lemma replacing Lemma 2.6.

Lemma 2.8 |hasdenselow/ Let f : X — X be a lower cd-covering. Then
there exists an open embedding U — X with a dense image and a section of
f over U.

Proof: Same argument as in the proof of Lemma 2.6.

To prove the “if” part consider a proper morphism f : X — X with a split-
ting sequence Z, — ... — Zy = X. We will construct a lower distinguished
square of the form (??) based on X such that the pull-back of f to Y has
a section and the pull-back of f to A has a splitting sequence of length less
than n. The result then follows by induction on n. We take A = Z;. To
define Y consider the section s of f, : X xx (X — Z;) — (X — Z;) which
exists by definition of a splitting sequence. Since f is proper and in particular
separated, the image of s is a closed subscheme. Let W be its complement.
The morphism X xx (X — Z;) — X is an open embedding thus the image
of W is open in X. We take Y = X — IW. One verifies immediately that the
pull-back square defined by A — X and Y — X is lower distinguished. The
pull-back of f to Y has a section and the pull-back of f to A has a splitting
sequence of length n — 1. This finishes the proof of the proposition.

Let GG be a finite flat group scheme over S and W be a finite flat scheme
over S with G-action. If X is a quasi-projective scheme over S the functor
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S" — Hom(S' xgW, X) on the category of schemes over S is represented by a
quasi-projective scheme which we denote by X". The evaluation morphism

X"xW—-X

corresponding to the identity morphism of X" with respect to the identifi-
cation
Homg(X"W, X") = Homg(X"V x W, X)

composed with the action G x W — W of G on W gives a morphism X" x
G x W — X corresponding to a morphism

[act] X" x G — XW (1)

One verifies easily that (1) is an action of G on XW. Thus X — X" is a
functor from the category of (quasi-projective) schemes over S to the category
of quasi-projective GG-schemes over S.

Proposition 2.9 ftakestocov/ Let f : X — X be an upper cd-covering of
quasi-projective schemes. Then fV : XW — XW is an upper cd-covering.

Proof: Since the upper cd-structure is complete f has a simple refiniment.
Thus we may assume that f is an etale morphism.

Lemma 2.10 Jettoet/ Let f :~)~( — X be an etale morphism of quasi-
projective schemes. Then fVV : XW — XW is an etale morphism.

Proof: It follows immediately from the fact that a morphism ¢ : X; — X,
of finite type is etale if and only if for any morphism Z — X, and any closed
embedding Zy — Z defined by a nilpotent ideal the map

HomX2(Z, Xl) — HOmXQ(Zo,Xl)
is bijective ([, ])-

By Lemma 2.4 we may assume that f has a splitting sequence and need to
verify that f" has a splitting sequence. By a simple inductive argument
we can reduce the problem to the case when f has a splitting sequence of
length one i.e. when there exists an open embedding j : U — X and a closed
embedding i : Z — U such that X = j(U) Ni(Z) and f has a section over
UllZ.



Consider the evaluation morphism ev : XV x W — X let U’ = ev1(U)
and let V; be the set of points v in X" such that

dimy, (O(U" x xw Spec(k,))) > i

where k, is the residue field of v and Speck, — X" is the canonical mor-
phism. Then Vo = X" and V; = () for i > deg(W/S). Let

[splseq|d = Zy — Z1 — ... — Zg— XV (2)

be a sequence of closed embeddings of G-schemes such that XV — Z;, = Z;
which can be constructed inductively starting with Z; by Lemma 2.5. We
claim that any such sequence is a splitting sequence for f (note that we
have the numbering of closed subschemes reversed compared to Definition
2.3). The proof is based on the following lemma.

Lemma 2.11 [finmor/ Let p : T — S be a finite flat morphism of schemes
and U an open subset in T'. Define V; as the set of points v of S such that

dimy, (O(U x g Spec(ky))) > i
Then one has:
1. V; are open

2. the subscheme U x g (V; — Vi11) is a connected component of T x s (V; —
Vier).

Proof: The first statement follows from [, |. To prove the second one it is
sufficient to show that U x g (V; — Vi41) is closed in T x g (V; — V;11). Since it
is constructible it is sufficient to show that for any henselian local scheme S’
and a morphism S” — S which lands in V; — V1 the subscheme U’ = U x5’
is closed in 7" = T x g S’. Let g be the generic point of S” and ¢ the closed
point. The condition that the image of S’ is contained in V; — V;,; implies
that
dimy,, (O(U'" x g Specky)) = dimy,, (O(U" x g Speck.)) =i

The scheme T is finite over S” and therefore it is a disjoint union of con-
nected components which are henselian local schemes. Let T; be the union
of components which are contained in U and 7T} the union of the rest of the



components. Since 7" and therefore all its components are flat over S" we
have
dimy,, (O(Ty x s Specky)) = dimy, (O(Ty x g Speck.))

and since U = Ty [[(U xs T1) we have
dzmkg(O(U X5 T1 X5 Speckg)) = dzmk(,((’)(U X g1 T1 X g Speckc))

By construction the closed points of 77 do not lie in U which implies that
the right hand side is zero. Thus the left hand side is zero i.e. U xg T} X g
Specky = () and since T X g/ Speck, is dense in T we conclude that UNT, = 1)
ie. U = T().

To show that (2) is a splitting sequence we need to construct G-equivariant
sections of f over Z; ., — Z;. By our assumption f has a section over U [ Z.
Thus f" has an equivariant section over (U [] Z)". Consider the morphism

(Zijg1 — Zi) x W — XV x W & X,

By Lemma 2.11 the pull-back of U to (Z; 11 — Z;) x W is a closed embedding.
Therefore the pull-back of U] Z — X is a closed subcheme A which is given
by a nilpotent sheaf of ideals. Since f is etale its section over A extends
uniquely to a section over (Z;11 — Z;) x W which is also equivariant. By
adjunction we get an equivariant section of f" over Z;,, — Z;,.

Example 2.12 The analog of Proposition 2.9 for the plain upper topology is
false. Let W = S1[S and G = Z/2. Then X" = X? with the permutation
action of Z/2. Let X = Uy UU, be a covering of X by two open subsets such
that f: U [[U, — X is a plain upper covering. Consider f2: (U, [[U;)* —
X?. For f? to be an upper covering in the category of schemes with Z/2-
action there should exists a collection of invariant open subsets V; of X? such
that X2 = UV} and f? has equivariant sections over each V;. Let z; be a point
of X —U; and z; a point of X — U, and V' an invariant open neighborhood of
(21, 22). Assume that X? is irreducible. Then V' is connected and the section
of f? over V must land in one of the connected components of (U; []Us)?.
But one verifies easily that neither one of the components maps surjectively
to V' which implies that no such section exists.

In the rest of this section we analize the “exactness” properties of the
functor X — X/G with respect to the standard cd-structures in the case of
a finite flat group scheme G.



We consider the upper cd-structure first. Let C' be a subcategory of the
category of GG-schemes which satisfies the following conditions

1. for any X in C' and any etale morphism U — X one has U € C

2. for any X in C the categorical quotient X/G exists in Sch/S, the
morphism p : X — X/G is finite and surjetive, and for any etale
morphism V' — X/G the morphism

(Vxx/e X)/G—=V
is an isomorphism.

Lemma 2.13 [isopenem/ Let C' be as above, X be an object of C' and
A — X be an equivariant open embedding and Y — X an equivariant etale
morphism. Then the morphism A/G — X/G is an open embedding and the
square
(AxxY)/G — Y/G
[agO] l l (3)
A/G — X/G

15 a pull-back square.

Proof: Let us show first that our conditions on C' imply that the square

A — X
lagl] | l (4)
AlG — X/G

is a pull-back square. Let A’ = (A4/G) x x/¢ X. We have an open embedding
A — A’ and A/G = A’/G. Since the morphisms A — A/G and A’ — A’'/G
are finite we conclude that A — A’ is a closed embedding. Then A" = AJ[ A”
and there exists a function f on A’ which is 0 on A and 1 on A”. Since A is
invariant in A’ this function is invariant and thus factors through A — A’/G.
Since A — A’/G is surjective it implies that f =01ie. A= A"

Since the morphism X — X/G is finite and surjective it is in particular
universally closed which implies that A/G — X/G is also an open embedding.
The same reasoning implies that (A xx Y)/G — Y/G is an open embedding
and therefore (A/G) xx/c (Y/G) and (A xx Y)/G are two open subsets of
Y/G and (AxxY)/G — (A/G) xx/c(Y/G). To check the opposite inclusion



take a geometric point § of Y/G whose image in X/G lies in A/G. Let y
be its lifting to Y which exists since Y — Y/G is surjective. Then y lies in
A X x Y since the composite square

AXXY — Y

! !
A — X
! !

A/lG — X/G
is a pull-back square.

Let @ be an upper distinguished square of the form (??) in C' and S be the
henselian local scheme of a point = of X/G. The morphism

SYISXX/G (Y/G) — S

is quasi-finite and thus Sy is a disjoint union of the form Sy = Sy, fin [1 Sy,0
where Sy fi, is finite over S and the image of Sy,y does not contain the closed
point of S.

Lemma 2.14 1] If = does not lie in A/G then the map Sy, fin, — S is an
1somorphism.

Proof: Let ~ ~

Sy — S
[ag2] | l (5)

SY — S

be the pull-back of the square
Yy — X
[ag3] | l (6)
Y/G — X/G

along the morphism S — X. The right vertical arrow is a finite morphism
and therefore S is the disjoint union of a finite number of henselian local
schemes. Let Sy, f;, be the union of the connected components of S’y which are
finite over S. Since the closed point of S lies outside of A /G the closed points
of S lie outside of A. Together with the fact that Q is an upper distinguished
square this implies that the morphism sy t;,, — S is an isomorphism. On the
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other hand the fact that the vertical arrows in (5) are finite implies that the
square
SY, fin 5
lag4] | ! (7)
S

SY,fin -

is pull-back. Thus Sy fin = Sy, jin/G = S/G = S.

Proposition 2.15 fupqu/ Let C' be as above and Q be an upper distin-
guished square in C' of the form (?7). Consider the square

B/G — Y/G
lagl@/G =1 | l (8)
AG — X/G

The the corresponding square p(Q/G) of the representable sheaves in the
upper cd-topology on Sch/S is push-forward.

Proof: By Lemma 2.13 the square /G is a pull-back square and the hor-
izontal arrows are open embeddings. By the same argument as in the proof
of Lemma 7?7 it is enough to check that the morphisms

[firstm]A/G][Y/G — X/G 9)

and
[secondm]Y/G [[(B/G x4, B/G) — Y/G xx /|GY/G (10)

define epimorphisms of the representable sheaves in the upper cd-topology.
Lemma 77 implies that a morphism of finite type Z — W defines an epi-
morphism of the representable upper sheaves if and only if for any henselian
local scheme S and any morphism s : S — W there exists a lifting of s to
a morphism S — Z. To prove that (9) defines an epimorphism let Sy be a
henselian local scheme and z : Sy — X/G be a morphism. If the image of
the closed point of Sy lies in A/G then x lifts to A/G since A/G — X/G
is an open embedding. If the image of the closed point of Sy lies outside of
A/G then z lifts to Y/G by Lemma 2.14.

To prove that (10) defines an epimorphism let Sy be a henselian local
scheme and (y1,42) : So — Y/G xx,¢ Y/G a morphism. Since Q/G is
a pull-back square Sy factors through (B/G x4,¢ B/G) if and only if the
corresponding morphism Sy — X/G factors through A/G. Thus we may
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assume that the image of the closed point of Sy lies outside of A/G. Then
by Lemma 2.14 we have y; = ys i.e. (y1,y2) lifts to the diagonal.

Corollary 2.16 Jexact/ Let C' be as above and {p; : U; — X} be an upper
cd-covering in C'. Then the family of morphisms {U;/G — X/G} is an upper
cd-covering in Sch/S.

Proof: The upper cd-structure is complete on C' by Lemma ?7. Thus {p;}
has a simple refiniment. It remains to show that for any simple covering
{pi : Ui — X} the family U;/G — X/G is a covering. The class S of
simple coverings for which it is true contains isomorphisms. Let us show
that it satisfies the second condition of Definition ??7. Let ) be an up-
per distinguished square in C' of the form (??) and {p; : ¥i; — Y} and
{g; + A; — A} be simple coverings in S. The families {Y;/G — Y/G} and
{A;/G — A/G} are upper cd-coverings by the assumptions. The pair of
morphisms {A/G — X/G,Y/G — X/G} is a covering by Proposition 2.15.
Thus {A,/G — X/G,Y;/G — X/G} is a covering.

Example 2.17 [et] The analog of Corollary 2.16 is false in the etale topology
that is given an etale covering U — X the morphism U/G — X/G need not
be an etale covering. Indeed let G = Z/2, X = A! and U = A'[[A! such
that G acts on X by z +— —z and on U by the composition of the sign map on
each component with the permutation of the components. Then U/G = A,
X/G = /af and the map U/G — X/G is z — 2% Tt has no section over
the strictly henselian local scheme of the point zero and thus is not an etale
covering.

Example 2.18 For an upper dsitingushed square @) the square /G does
not have to be an upper dsitinguished square. Indeed let X = AJ] X, and
Y = B[] X, where B — A is isomorphic to the map U — X of the previous
example. Then the map Y/G — X/G is not etale and in particular /G is
not an upper distinguished square.
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