

Home Search Collections Journals About Contact us My IOPscience

∞-Groupoids as a model for a homotopy category

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1990 Russ. Math. Surv. 45 239

(http://iopscience.iop.org/0036-0279/45/5/L16)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.112.203.62

This content was downloaded on 28/03/2015 at 21:40

Please note that terms and conditions apply.

∞-Groupoids as a model for a homotopy category

V.A. Voevodskii and M.M. Kapranov

It is known [4] that CW-complexes X such that $\pi_i(X) = 0$ for $i \ge 2$ can be described by groupoids from the homotopy point of view. In the unpublished paper "Pursuing stacks" Grothendieck proposed the idea of a multi-dimensional generalization of this connection that used polycategories. The present note is devoted to a realization of this idea.

1. A spherical ∞ -category C consists (see [1]-[3]) of a collection of sets C_i , $i \in \mathbb{Z}_+$, maps s_i , t_i : $C_k \to C_i$, $\mathfrak{J} = \mathfrak{J}_k$: $C_i \to C_k$ defined for $i \le k$, and partial composition operations $(a, b) \mapsto a \circ b$ on C_k defined for $i \le k-1$ in the case when $s_i(a) = t_i(b)$. A list of axioms for these

data is given in [1] (see also [2]-[3]), where D_i^0 , D_i^1 , and E_k are used instead of our notation s_i , t_i , and \mathfrak{A}_k . It follows from these axioms, in particular, that for $i \leq k-1$ the operation \mathfrak{S}_k endows C_k

with the structure of a category with the set C_i of objects. If $C_{n+i} = \emptyset$ (C_n) for $i \ge 0$, then C is called an *n-category*. In particular, a 1-category is the same as an ordinary category. All ∞ -categories form the (1-) category $\operatorname{Cat}_{\infty}$. For an ∞ -category C the elements of C_i are called *i-morphisms* of C. The 0-morphisms are called *objects*.

2. An ∞ -category C is called an ∞ -groupoid if the following conditions (GR'_{ik}) , (GR''_{ik}) hold for all i < k:

 $(GR'_{ik'}, i < k-1)$. For every $a \in C_{i+1}$, $b \in C_k$, and $v, u \in C_{k-1}$ with $s_i(a) = t_i(u) = t_i(v)$, $a \circ u = s_{k-1}(b)$, and $a \circ v = t_{k-1}(b)$ there exist an $x \in C_k$ and $a \circ \in C_{k+1}$ such that

 $s_k(\varphi) = a \circ x$, $t_k(\varphi) = b$, $s_{k-1}(x) = u$, and $t_{k-1}(x) = v$.

 $(GR'_{k-1,k})$. For every $a, b \in C_k$ with $t_{k-1}(a) = t_{k-1}(b)$ there exist an $x \in C_k$ and a $\varphi \in C_{k+1}$ such that s_k $(\varphi) = a \circ x$ and t_k $(\varphi) = b$.

 $(GR_{ik}^{"}, i < k-1)$. For every $a \in C_{i+1}$, $b \in C_k$, and $v, u \in C_{k-1}$ with $t_i(a) = s_i(v) = s_i(v)$, $u \circ a = s_{k-1}(b)$, and $v \circ a = t_{k-1}(b)$ there exist an $x \in C_k$ and $a \circ C_{k+1}$ such that

 $s_k(\varphi) = x \circ a, \ t_k(\varphi) = b, \ s_{k-1}(z) = u, \ \text{and} \ t_{k-1}(x) = v.$

 $(GR_{k-1,k}'')$. For every $a, b \in C_k$ with $s_{k-1}(a) = s_{k-1}(b)$ there exist an $x \in C_k$ and $a \varphi \in C_{k+1}$ such that $s_k(\varphi) = x \circ a$ and $t_k(\varphi) = b$.

In an informal sense, the conditions amount to weak (to within a "homotopy" φ) solubility of all equations of the form $a \circ x = b$ and $x \circ a = b$ in the cases when such equations make sense. We

define an *n-groupoid* to be an *n*-category that is an ∞ -groupoid. Let $Gr_n \subset Gr_\infty \subset Cat_\infty$ be the full subcategories of *n*-groupoids and ∞ -groupoids.

3. Let $G \in Gr_{\infty}$, and let $x \in G_0$ be an object. For i > 0 we denote by $\pi_i(G, x)$ the quotient set of $\{z \in G_i : s_{i-1}(z) = t_{i-1}(z) = 1, x\}$ with respect to the following equivalence relation: $z \sim w$ if there is a $y \in G_{i+1}$ such that $s_i(y) = z$ and $t_i(y) = w$. Also, let $\pi_0(G)$ be the quotient of G_0 with respect to the following equivalence relation: $x \sim x'$ if there is a $y \in G_1$ such that $s_0(y) = x$ and $t_0(y) = x'$.

Proposition 1. For $i \ge 1$ the operation $\bigcap_{i=1}^{\circ}$ endows $\pi_i(G, x)$ with the structure of a group that is commutative for $i \ge 2$.

We denote by W (respectively, W_n) the class of morphisms $f: G \to G'$ of the category $\operatorname{Gr}_{\infty}$ (respectively, Gr_n) that induce bijections $\pi_0(G) \to \pi_0(G')$ and $\pi_i(G, x) \to \pi_i(G', f(x))$ for all $x \in G_0$ and i > 0. Let $\operatorname{Gr}_{\infty}[W^{-1}]$ be the category of fractions [4]. Also, let Hot denote the homotopy category of CW-complexes, and $\operatorname{Hot}_{\leq n} \subset \operatorname{Hot}$ the full subcategory of complexes X such that $\pi_i(X, x) = 0$ for all i > n and $x \in X$.

Theorem 2. The following equivalences of categories are valid:

$$\operatorname{Gr}_{\infty}[W^{-1}] \simeq \operatorname{Hot}, \operatorname{Gr}_{n}[W_{n}^{-1}] \simeq \operatorname{Hot}_{\leq n}.$$

- 4. In one direction the equivalence in Theorem 2 is supplied by the nerve functor for ∞ -categories in [2]. This functor associates with an ∞ -category C the simplicial set Nerv(C), whose p-simplexes are the "weakly commutative p-dimensional simplexes" in C. The following facts are proved in the proof of Theorem 2.
- **Theorem 3.** Every CW-complex is homotopically equivalent to the nerve of some ∞ -groupoid that is unique to within an isomorphism in the category $\operatorname{Gr}_{\infty}[W^{-1}]$. Every CW-complex X such that $\pi_i(X, x) = 0$ for all i > n and $x \in X$ is homotopically equivalent to the nerve of some n-groupoid that is unique to within an isomorphism in the category $\operatorname{Gr}_n[W_n^{-1}]$.
- **Theorem 4.** a) For every ∞ -groupoid G, its nerve is a complete simplicial set in the Kan sense (see [4]). In particular, for all $x \in G_0$ there is a natural isomorphism $\pi_i(G, x) \simeq \pi_i(|\operatorname{Nerv}(G)|, x)$, where the usual homotopy groups are on the right-hand side, and $|\cdot|$ denotes the geometric realization of a simplicial set.
 - b) Conversely, if the nerve of an ∞ -category C is a complete simplicial set, then C is an ∞ -groupoid.

We are grateful to V.V. Shekhtman for his interest in this work and for useful discussions.

References

- R. Brown and P. Higgins, Cahiers Topologie Géom. Différentielle 22 (1981), 371-386.
 MR 83g:55020b.
- [2] R. Street, J. Pure Appl. Alg. 49 (1987), 283-335. MR 89a:18019.
- [3] Y.I. Manin and V.V. Schechtman [Shekhtman], Adv. Stud. Pure Math. 17 (1989), 289-308.
- [4] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, New York 1967. MR 35 # 1019.

Translation: Kategorii chastnykh i teoriya homotopii, Mir, Moscow 1971. MR 50 # 5785.

Moscow State University
Steklov Institute of Mathematics

Received by the Board of Governors 11 January 1990