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1.Preface

1 Preface

In the present paper I will suggest a construction which assigns to the scheme
S a tensor triangle category DM(S) and a covariant functor M from the
category of schemes over S to DM(S), which satisfies the usual properties of
homology theories. I hope that it gives us an appropriate theory of covariant
mixed motives (except, that I have no idea how to prove the cxistence of
the t-structure in DM(S)). This construction was inspired by topological
analogs. The “homology theory of schemes” we obtain this way is related to
the would-be homotopy theory of schemes in the same way as usual singular
homologies of topological spaces are related to classical homotopy theory.

A part of this work was done in collaboration with M.Kapranov together
with whom we started to think about these motivic matters two years ago
in Moscow. I am also very grateful to David Kazhdan, Sasha Beilinson and
Sasha Goncharov for their interest and very inspiring discussions.
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2.Generalities 2

2 Generalities.

2.1 Freely generated sheaves of abelien groups.

This section is devoted to the very useful construction one has for arbitrary
site. Namely, like in the category of sets one can define the free group (or
free abelien group) generated by a set in the category of sheaves of sets on
a site one can define the free group object (resp. free abelien group object)
generated by a sheaf of sets.

For a site T' denote by Sets(T') and Ab(T) the categories of sheaves of
sets and abelien groups on T respectively.

Proposition 2.1 Let f : Ab(T) — Sets(T') be the forgetful functor. Then
there exists a functor Z : Sets(T') — Ab(T) left adjoint to F.

Proof: For a sheaf X of sets on T we defined the sheaf Z(X) of abelien
groups as the sheaf associated with the presheaf U — Z(X(U)), where
Z(X(U)) is the free abelien group generated by the set X(U). The proof of
the adjointness property is trivial.

The sheaf Z(X) is called the sheaf of abelien groups freely generated by X.
I shall also use a notation Z for the functor which takes X to the kernel of
the natural map Z(X) — Z which is induced by the canonical morphism
from X to the finite object in Sets(T').

Following proposition summarize main properties of the functor Z(x).

Proposition 2.2 1. The functor Z(*) is right ezact.
2. The functor Z(*) preserves monomorphisms.

3. For any X € Sets(T) and U € ob(T) the group Z(X)(U) has no tor-
ston.

4. Sheaves Z(X) are flat (as sheaves of abelien groups).
5. For X,Y € Sets(T) one has Z(X 1Y) = Z(X) ® Z(Y) and Z(X x
Y)=Z(X)QZ(Y).

Proof:
1. It follows from general properties of adjoint functors.
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2.Generalities 3

2. It is obviously, that the functor which takes a sheaf X of sets to the
presheaf of the form U — Z(X(U)) preserves monomorphisms. Since Z is a
composition of this functor with the functor of associated sheaf our statment
follows from the exactness of this last functor.

3. This is obviously equivalent to the injectivity of the maps Z(X) —
Z(X) where "m" is the multiplication by m. In this form our statment follows
from the construction of the sheaf Z(X) in the same way as a second item of
our proposition.

4.1t is well known, that a sheaf of abelien groups is flat if and only if its
fibers are flat as Z-modules, which is equivalent to that they have no torsion.
Our statment follows now from the previous item.

5. It follows directly from the definitions of direct sums and tensor prod-
ucts of sheaves.

Examples:

1. One can easily see that the presheave of the form X — Z(F(X)) for
some sheaf of sets F' will never be a sheaf in any reasonable topology.
The cause is that it takes the disjoint union of open sets U, V to the free
abelien group generated by the product of F(U) and F(V), i.e. to the
tensor product of the groups corresponding to each open set instead of
their direct sum.

2. Let X be the spectrum of a strictly local ring and Xy; be the site
whose objects are schemes flat and finite over X and coverings are
the flat coverings. Then for any sheaf F' of sets on Xys the group
Z(F)(U) is isomorphic to the direct sum @Z(F(U;)), where U; are the
connected components of U. Therefore in this example the presheave
U — Z(F(U)) is very close to be a sheaf. This fact was used by
Shatz [] to prove some results on the flat cohomological dimension of
such schemes X.

3. Let T be the category of simplicial sets which we consider as a site
with the weakest topology (i.e. the topology with respect to which
all presheaves are sheaves). Then every sheaf on T is representable
by some simplicial set and the corresponding freely generated sheaf
of abelien groups is representable by the free abelien simplicial group
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2.Generalities 4

generated by this simplicial set. Opposite to the previous example the
group Z(F)(U) in this case is in general much biger than Z(F(U)).

4. Let G be a profinite group and T be the site of finite G-sets with the
topology topology defined by means of surjective families of morphisms.
A sheaf of abelien groups (resp. of sets) on T¢ is a discrete G-module
(resp. discrete G-set).The functor of freely generated sheaf of abelien
groups corresponds on this language to the functor which takes a G-set
to the corresponding freely generated G-module.

5. Let T be a topological space and U be its open subset. Denote by U the
corresponding represerntable sheaf of sets on T'. Then Z(U) = #(Zy)
where Zy is the constant sheaf on U and ¢ : U — T is the inclusion.
(See the end of this section for a generalization of this example.)

From this point I suppose that our site has sufficiently many points. It
means that there exists a family of morphisms of sites z; : Sets — T
such, that a morphism f : X —s Y of sheaves of sets on T is surjective
(resp. injective) if and only if all the morphisms z}(f) are surjective (resp.
injective). This condition holds in particular for any site T" such that topology
on T is generated by a pretopology where coverings are finite families of
morphisms (see [?, 6.9.0]).

Proposition 2.3 Let f : X — Y be a surjection of sheaves of sets on T.
Then the sequence of sheaves of abelien groups

e — I X xy X xy X) — Z(X xy X) — Z(X) — Z(Y) — 0

wehre the differencial is defined as alternated sum of the maps correspondings
to the partial projections is ezact.

Proof: Since T has sufficiently many points we can reduce our problem to

-the case T = Sets where it is trivial.

We denote the exact sequence of sheaves which corresponds to a surjection
f: X — Y by the proposition above by C.(f).

For an object U of a site T' we denote by Z(U) the sheaf of abelien groups
freely generated by the sheaf of sets representable by U.
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2.Generalities 5

Proposition 2.4 Let T be a site and U — V be a covering in T. Then the
sequence of sheaves

e — Z(U xv U xy U) — Z(U xv U) — ZU) — Z(V) — 0

wehre the differencial is defined as alternated sum of the maps correspondings
to the partial projections is ezact.

Proof: It is a direct corollary of the proposition ?7.

Proposition 2.5 Let g : X' — X be a morphism of sheaves of sets on T
and f : Y — X be a surjection. Then both the kernel and the cokernel of
the natural morphism of complezes C.(f xx X') — C.(f) are ezact.

Proof: Consider the decomposition of g of the form g = g1go where g is a
surjection and g; is an injection. It defines a factorization of our morphism
of complexes into the composition of surjection and injection in the full sub-
category of exact complexes, which implies our result.

Proposition 2.6 Let f : X — Y be a morphism of sheaves of sets. Then
one has a natural isomorphism

Im(Z(f)) = Z(Im(f)).

Proof: It follows easily from ??.1 and 7?.2.

Proposition 2.7 Let f, : X3 — Y, fo : X — Y be morphisms of sheaves
of sets on T. Then one has

Im(Z(£)) N In(Z(fz)) = Im(Z(X1 xy X2)).
Proof: One can easily reduce our problem to the case T' = Sets, where it is

trivial.

The following proposition is a generalization of the adjointness property of
the functor Z(x).
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2.Generalities 6

Proposition 2.8 Let T be a site and U € ob(T). Then for any sheaf F of
abelien groups on T and any i 2> 0 one has a natural isomorphism:

H'(U,F) = Ezt((Z(U), F)

Proof: It follows immediately from the adjointness property of Z(*) and the
description of Ezt-groups by means of an injective resolution of F.

Following construction provides a different approach to the definition of freely
generated sheaves of abelien groups, which is sometimes more convenient
than the one we gave above.

Let U be an object of a site T. Denote by U/T the relative category of
objects of T over U which we consider as a site with the topology induced
in an obvious way by the topology on T. There is a natural morphism
of sites p : T/U — T which corresponds to the functor p~! of the form
"1 (V) = (V x U — U). Let p.,p" be the corresponding functors of the
direct and inverse images of sheaves respectively.

Proposition 2.9 There ezists a functor pr : AW(T[U) — Ab(T) left adjoint
to p*.

Proof: Let F' be a sheaf of abelien groups on T/U. Consider the presheaf
pz on T of the form

pa(F)(V) = @sertomv)F(f : V — U).

We define pr to be the sheaf associated with a presheaf px. To prove that the
functor pr defined by means of this construction is left adjoint to p* we have
to show that for any pair of sheaves F' € 0b(Ab(T'/U)) and G € ob(AdT))
there exists a natural bijection

Hom ayrv)(F,p"G) = Hom gyy(n F, G).

By the adjointness property of the functor of associated sheaf a right hand
side 1s naturally isomorphic to Hom gy1/v)(pz F, G). Therefore a morphism
a: pF — G is just a natural family of morphisms

agv—y F(f:V—U) — G(V).
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From the other hand a one has
PPG(f:V—U)=G(V)

and therefore a morphism F' — p*G is a natural family of morphisms of
exactly the same form. Proposition is proven.

Proposition 2.10 Functor py : AY(T[/U) — Ab(T) is ezact.

Proof: Since p is left adjoint to p* it is right exact by the general properties
of the adjoint functors. It is sufficient to prove therefore, that pr preserves
monomorphisms. By our construction p is a composition of the functor
pe with the functor of associated sheaf. It follows immediately from an
explicit description of pa that it preserves monomorphism and the functor
of associated sheaf is known to be exact. Proposition is proven.

A connection between functor p; and functor of freely generated abelien group

is given by the following proposition.

Proposition 2.11 Let Zy be a constant sheaf on T/U. Then one has
nZy = Z(U).

Proof: It follows immediately from the constructions of the functors p» and

Z given above.

Denote by Zy : Sets(T/U) — Ab(T/U) a functor of freely generated sheaf
of abelien groups on T/U. The above proposition implies in particular, that
for any (V — U) € ob(T/U) one has a natural isomorphism pi(Zy(V —
U)) = Z(V).

2.2 Homological category of site with interval

Let T be a site. An interval in T is by the definition an object I+, such that
there exists a triple of morphisms (u : It x It — I+ 44,3, : pt — IT)
satisfying the following conditions

£(20 % Id) = p(ld x ip) = iop
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2.Generalities 8

.u'(il X Id) = p(IdX i]) = Id,

where p: It — pt is a canonical morphism.

The goal of this section is to assign to any site with interval a tensor trian-
gle category H(T,I%) (or just H(T')) which is called a homological category
of T and to prove its elementary properties.

There are two most important examples of sites with interval. First is
a category A% — Sets of the simplicial sets with a weakest topology and a
standard simplicial interval as I*. In this case category H(T') is equivalent to
derived category of abelien groups. Another example is a category of scheme
considering as a site with respect to some topology on it and with an affine
line as an interval.

Let I' be a kernel of a canonical morphism Z(I¥) — Z. Denote by

D(T) a derived category of the category Ad(T') of sheaves of abelien groups
on T constructed by means of bounded complexes. It is known to be a tensor
triangle category.
Definition 2.12 Homological category H(T) of site with interval It is de-
fined as a strong localization of the category D(T') with respect to a thick
subcategory generated by objects of the form X ® I' where X € ob(D(T))
(see Appendiz B for definition of strong localization).

It follows from the results of Appendix B that H(T') has a natural tensor
triangle structure. I shall also use a notation Ho(T') for a category defined
in the same way as H(T') but by means of usual localization.

Definition 2.13 A functor M : Sets(T) — H(T) is defined as a composi-
tion of functor Z with a natural functor from AY(T) to H(T). In the same
way are defined functors M, My, M.

Denote by i : Z — I' morphism induced by the difference Z(iy) — Z(j;) :
Z — Z(I*). It is easy to see that i is a monomorphism. Let S! be its
cokernel and j : S — Z[1] a corresponding morphism in D{T). Denote
5%" (resp. I®*) by S™ (resp. I?).

Proposition 2.14 Let X,Y € obD(T) then one has:
Hom;;o(q-)(X, Y) = Iimn_ooHomD(T)(X ® Sn’ Y'[n])

where the direct limit is defined by tensor multiplication of morphisms with
j: 8 — Z[1].
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2 Generalities 9

Proof: Note first of all that the morphism j : $? — Z[1] represents iso-
morphism in Ho(T') and therefore there is a canonical morphism:

limy, oo Hompry(X ® 57, Y[n]) — Homy, 1\ (X,Y)

One can see that for any exact functor F : D(T) — D' from D(T) to
a triangle category D'. such that F(g) is an isomorphism for any such g
that it cone lies in the thick subcategory generated by objects of the form
X ® I' there exists the unique extension of the map Homp(ry(X,Y) —
Homp(F(X), F(Y)) to the map

limy o Hompy(X ® 5™, ¥[n]) — Homp:(F(X), F(Y)).

Using universal properties of localization we see that to prove our theorem
1t 1s sufficient to show, that for any Y from the thick subcategory generated
by objects of the form X ® I there exists n such that Idy ® ;5% = 0. It
is sufficient to show that class of objects satisfying this property contains
objects of the form X ® I* and is thick.

Let Y = X @ I'. Then Idy ®j : Y ® S* — YT1] can be included in
exact triangle:

Y —-YQRI' —YRS$—VY]]

The morphism g : I' ® I* — I! induces a splitting of the morphism ¥ —
Y ® I' and, therefore Idy ® j = 0.

Let us show now, that our class of object is indeed thick, i.e. that it
satisfies the axioms of the definition ??

1. Fist axioms satisfies by trivial reason.

2.Let X —Y —2z-L, XT]1] be an exact triangle such that for some
m and n one has Idy ® 7™ = 0 and Idy ® j®* = 0 (we can restrict ourself
to this case because if Idy; ® 78 = 0 for some n then the same holds for any
Ulk]). Let us show that Idz ® j8™+®) = (. Consider a diagram:

Y ® §*— Z 8 S— z[1] ® 5"

N

V4

Yin] — ZIn]
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2.Generadlities 10

Doted arrow exists because the upper string is exact and Y  S* — Y[n]
is equal to zero. Denote it by a. One obviously has

Idz ® ™" = (1dz ® 1) ® ™ = (@ ® j°™)(f ® Idsm)

and
a®j®" = alm](Idxpese ® ™) = 0.
3. Similary.

Corollary 2.15 Let X,Y be a pair of objects of the D(T') such that for any
n and m one has
HomD(T)(X I, Y[m}) =0

then
Homyyr)(X, Y[m]) = Homp(ry(X, Y [m])-

Proof: We should show that morphisms
Hompz)(X,Y[m]) — Hom(X ® §",Y[m + n])

are isomorphisms for all n. We shall prove it by the induction on n. For
n = 0 our statment is trivial. To make an inductive step consider the exact
triangle

X5 -XI'e5" ! - X5 — X Q5]

It is sufficient to show that Hompr)(X ® I' ® $*1,Y[m]) = 0. Obviously,
if X satisfies the conditions of our proposition so does X ® I'. Therefore, by
the induction we have

HomD(T)(X R Ie ® Sn—l,Y[m]) = HomD(T)(X ® II,Y[m - ]) =0.

Definition 2.16 An object Y € 0b(D(T')) is called strictly homotopy invari-
ant if for any X € ob(D(T)) one has Hom(X ® I',Y) = 0.
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2.Generalities 11

Proposition 2.17 Let Y € ob(D{T)) be a strictly homotopy invariant ob-
ject. Then for any X one has

HOmH(T)(X, Y) = HomD(T)(X, Y)

Proof: Follows from the proposition ??

We call an object X of D(T') an object of finite dimension if there exists N
such that for any F' € 0b(Ad(T)) and any n > N one has

Homp1y(X, Fln]) = 0.

Proposition 2.18 Suppose, that Z,1' and X are objects of finite dimension.
Then for any Z € ob(D(T')) one has

HO?‘TLH(T)(X, Z) = HomHo(T)(X, Z)

Proof: It is sufficient to show that for unbounded (with respect to the objects
of the form Y x I') object Z € ob(D(T)) one has

HomHo(T)(X, Z) =0.

It follows immediately from our assumptions and proposition ??.

Let (T1,If), (T2, IF) be a pair of sites with interval. A morphism F :
(Th, I}t) — (T2, If) is by definition a morphism of sites F : T} — T
such, that F~1(I}) is isomorpbic to I;. For example if T}, 7% have the same
underlying categories and topology of T; is stronger than that of T, and
I} = I then an identity functor is a morphism of sites with interval.

Proposition 2.19 Let F : (Ty, I{) — (T2, I}) be a morphism of sites with
interval, then it induces a tensor triangle functor

H(F) : H(T3) — H(TY).

Proof: There is a functor D(F) : D(T;) — D(T;) which is induces by the
inverse image of sheaves. One can easily see, using universal properties of
localization, that it can be descended to a functor H(F) : H(T2) — H(Th)
which obviously satisfies all the properties we need.

There is an obvious analogue of this proposition for the categories Ho(T1), Ho(T2)-
We denote the corresponding functor by Ho(F).
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2.Generalities 12

Proposition 2.20 Let (Ty, IT7), (T2, I}) be sites with interval such, that un-
derlying categories of Ty and T coincide, I = I and topology on Ty
is stronger than topology on T;. Denote by F : Ty — T, a morphism
which corresponds to the identity functor on underlying categories. Then
Ho(F) : Ho(Tz) — Ho(Th) is a localization of Ho(T2) with respect to thick
subcategory generated by the objects which correspond to the sheaves F of
abelien groups on T, such, that Ty-sheaf associated with F is isomorphic to

ZEero.

Proof: Obviously.
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3.H-topology on the category of schemes 13

3 H-topology on the category of schemes.

3.1 H-topology.

This section is devoted to the definition of the new Grothendieck topology
on the category of schemes over the base which I call h-topology because
it seems to be the suitable for the developing of the homotopy theory of
schemes.

All through this section by the scheme I mean the separated netherien
scheme over a fixed base S and all the morphisms of schemes are morphisms
over S. I shall omit S in all the notations below where it is possible.

The most important cause why the topologies usually used are not satis-
factory for our purpose is that there are all too weak. Let me explain what I
mean. The only cause why we are to use the topologies and sheaves in the
homotopy theory is the absence of the direct limits in the category of schemes
which we need to define such objects as a cone of a morphism, suspension
or realization of a simplicial scheme. From the other hand there are several
situations when the direct limits in the category of schemes exist. The most
important examples are the symmetric powers and the objects like A™ or
JI™ which can be considered as the direct limits of the suitable diagrams of
affine spaces. Therefore it is natural to try to find the topology such that
the direct limits of such kind would be representable by the corresponding
direct limits of sheaves. (Note that the functor which takes an object of the
category to the corresponding representable sheaf of sets preserves inverse
limits but not in general direct ones.)

Let C be a site, i.e. the category with a Grothendieck topology on it. De-
note by Shv(C) a category of sheaves of sets on C and by L : C — Sho(C)
natural functor which takes an object to the corresponding representable
sheaf. Consider an equalizer of the two morphisms

X3IY — 2.

It is easy to see that for L(Z) be the equalizer of the morphisms L(X) =
L(Y) it is necessary (but not sufficient) that the morphism ¥ — Z is
the covering in C. Therefore if we want L(OA™) , to be a direct limit of
the diagram of the sheaves L(AF) we must admit in our topology the cov-
erings like a covering of the scheme by its irreducible components. Con-
sidering the easiest example of such kind, say the covering of the scheme
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3.H-topology on the category of schemes 14

X = Spec klz,y}/(zy) by two affine lines we notice that the corresponding
morphism, being the strict epimorphism in the category of schemes, is not the
universal epimorphism. To see it it is sufficient to consider the base change
over the morphism Speck[t]/(t?) — X corresponding to the tangent vector
in the singular point of X which does not lie along any of the irreducible
components. Our would be covering after this base change become the mor-
phism Spec(k@® k) — Speck[t]/(t?) which obviously is not the epimorphism
of schemes. The main conclusion we can make from this example is that the
topology for which the functor L preserves the direct limits of such type can
not be subcanonical, i.e. that the presheaf representable by the scheme will
not be in general the sheaf in it.

There is also another class of the coproducts in the category of schemes
which I want to be preserved by the functor taking a scheme to the corre-
sponding representable sheaf. Namely, consider a blowing up p: Xz — X
of the closed subscheme Z of X. Then in the category of schemes X is a
coproduct of Xz and Z with respect to the natural morphisms p~1(Z2) — Z
and p71(Z) — X.

Gathering all these examples together we come to the following definition.

Let p : X — Y be the morphism of schemes. It is called topological
epimorphism if the underlying topological space of Y is the quotient space
of the underlying topological space of X, i.e. if p is surjective and the subset
AinY is open if and only if p~(A) is open in X. One can easily see that
any open or closed surjective morphism is the topological epimorphism in
this sense. The topological epimorphism p : X — Y is called universal
topological epimorphism if for any morphism f : Z — Y the projection
Z xy X — Y is the topological epimorphism. Note that any surjective
proper or flat morphism is the universal topological epimorphism as well as
any composition of such morphisms.

Definition 3.1 H-topology on the category of schemes is defined as the topol-
ogy associated with the pretopology with the coverings of the form {p; : U; —
X}, where {p;} is the finite family of the morphisms of finite type such that
the morphism [ p; : [IU; — X is the universal topological epimorphism.

I shall also use gfh-topology, which corresponds to the coverings of the
same type, but only for the quasifinite morphisms p;.

Proposition 3.2 The class of the coverings defined above forms the Grothendieck
pretopology on the category of schemes.
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3.H-topology on the category of schemes 15

Proof: Obviously.

Examples:

1.

Any flat covering is, obviously an h-covering. Moreover, since any flat
surjective morphism of the finite type admit a section over the quasi-
finite surjective flat morphism, even qfh-topology is stronger then the
flat one.

. Any surjective proper morphism is an h-covering. It follows almost

immediately from this remark, that for the closed subscheme Z of X,
the sheaf representable by X is a suitable coproduct of the sheaves
representable by Z and the blow-up X3.

. Let X be a scheme and G be a finite group acting on X. Suppose

that there exist a categorical factor X/G (see [?, ex.5 n.1]). then the
corresponding representable gfh-sheaf (and, a fortiori, an h-sheaf) is
a quotient sheaf of the sheaf representable by X with respect to the
induced G-action. Note, that if the action of G is not free, then even
in the easiest cases this statment is false for any standard topology like
etale or flat.

Consider a blow up p : X, — X of the surface X with the center in
the closed point z € X and let U = X, —{zo} where z, is a closed point
over z. Then the natural morphism py : U — X is not an h-covering.
To see it consider a curve C in X such that p1(C) = p~}({z}) U C
and C Np~t({z}) = {zo}. Obviously, p;*(C — {z}) is closed in U but
C — {z} is not. Therefore py is not a topological epimorphism.

. The condition of the finiteness of the family of morphisms in the defi-

nitions of both h- and gfh-topologies is essential. Consider a surface X
and a closed point z € X. Let

a = (a1,...;an,..) € imm/m"

be an element in the completion of the maximal ideal m of the local ring
of z which does not correspond to any element of m. let X,, — X be
a blow-up of an ideal (a,)+m™. It is easy to see that X,;; is a blow-up
of X, with the center in the point z, € X, overz € X. Let U, = X, —
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3.H-topology on the category of schemes 16

{zn}. It can be shown, that the morphism [],,5o U, — X is a universal
topological epimorphism, though the morphisms [[xsns0 Un — X are
not for any N < co.

It is clear from the above examples that it is not easy, in the general case,
to say whether or not a given surjective morphism is a universal topological
epimorphism. I am going to define now some special class of h-coverings
which I call coverings of the normal form. The main result of this paragraph is
the theorem, that any h-covering of an excellent scheme admit a refinitement
which is an h-covering of the normal form.

Proposition 3.3 Let {U; 2+ X} be an h-covering of the scheme X, denote
by [1V; the disjoint union of the irreducible components of [I1U; such that
for any j there exists an irreducible component of X; of X over which V; is
dominant. Then the morphism q:[[V; — X is surjective.

Proof: Suppose first that X is irreducible. Let z € X. We want to prove
that z lies in the image of q. Considering a base change along the natural
morphism Spec(O,;) — X we may suppose that X is a spectrum of the
local ring and z is a closed point of X.

Denote by Z the closure of the image of the irreducible components of
L1 U; which are not dominant over X. Since this image is a constructible set
which does not contain the generic point of X one has Z # X. Let z € X be
a closed point of X. Considering the base change along the natural morphism
SpecO, — X we may restrict ourself to the case X = SpecO,. It follows
from [?, 10.5.5 and 10.5.3], that the set of the points of the dimension one
is dense in X. Therefore, there exists a point y € X of the dimension one
which does not lie in Z. If z does not lie in the image of ¢ then the preimage
q~*(y) is closed which implies that p;*(y) are closed as well, which gives us
a contradiction with the condition that {p;} is an h-covering.

Suppose now, that X is a general scheme and X,.y = UX} be the com-
position of the maximal reduced subscheme of X into the union of its ir-
reducible components. Consider the natural morphisms Xz — X and let
{U: xx X; — X} be the preimages of our h-covering. Then the morphisms
1 Vjx — X&, where Vj;, are the irreducible components of [T U; x x X which
are dominant over Xj are surjective, which implies that [[V; — X is sur-
jective, since [] V; = [TI1 Vik.
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3.H-topology on the category of schemes 17

Remark: This proposition leads to the following generalization of the ex-
ample 4 above. Let Z be a closed subscheme of the integral scheme X and
Xz — X be a blow-up with the center in Z. Suppose, that for an open
subscheme U C Xz the composition U — Xz — X is an h-covering.
Then U = Xz. To show it, let me consider a base change along the pro-
jection Xz — X. Then U xx Xz is an open subscheme in X7 xx Xz.
This last scheme is a union of the diagonal A and a component, which is not
dominant over Xz. According to our proposition (U xx Xz) NA — Xz is
a surjection, which implies that U = X3.

Proposition 3.4 Let {p; : U; — X} be a finite family of the quasi-finite
morphisms over the normal connected scheme X. Then {p;} is a gfh-covering
if and only if the subfamily {q;} consisting of those p; which are dominant
over X is surjective. In that case {q;} is also a qfh-covering of X.

Proof: The “only if” part follows immediately from the previous proposition.

To prove the “if” part it is sufficient to notice that in the case of the nor-
mal connected scheme X each dominant quasi-finite morphism is universally
open [?, p.24] and therefore each surjective family of such morphisms is an
b-covering.

Remark: The statment of the proposition above is false for the schemes
which are not normal. To see it, consider a surface X over an algebraically
closed field and let z,y € X be two different closed points of X. Let Y be a
scheme obtained from X by glueing the point z,y together. Let U = X —{z}.
The natural morphism p : U — Y is surjective but it is not a gfh-covering.
To show it, consider a curve C C X in X, which contains z and does not
contain y. Then p~1(C —{z}) is closed in U, while C —{z} is not closed in Y.

Definition 3.5 The finite family of the morphisms {U; 25 X} is called
an h-covering of the normal form if the morphisms p; admit a factorization
of the form p; = s o f o in;, where {in; : U; — U} is an open covering,
f:U — Xz is a finite surjective morphism and s : Xz — X is a blowing
up of the closed subscheme of X.
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3.H-topology on the category of schemes 18

Beginning from this point, I restrict my considerations to the excellent
schemes (see [?, 7.8]). I am almost sure, that this restriction can be omited,
but since it leads to the significant simplifications of the proofs, it seems to
be reasonable.

Let me recall several properties of the excellent schemes, which I shall use
below without additional references. Any scheme of the form X = Spec(A)
where A is a field or a Dedekind domain with the field of fractions of the
characteristic zero is excellent. If scheme X is excellent and Y — X is
a morphism of the finite type, then Y is excellent. Any localization of the
excellent scheme is excellent.

The most important for our purposes property of the excellent schemes
is that for any excellent integral scheme X and the finite extension L of the
field of functions on X, the normalization of X in L is finite over X.

Lemma 3.6 Let f : Y — X be a finite morphism, then the underlying
topological space of the diagonal Y CY xx Y is an irreducible component of
Y x X Y.

Proof: Obviously.

Lemma 3.7 Let X be an ezcellent normal connected scheme and L ba a
finite purely inseparable extension of the field of functions K(X) of X. Then
the normalization f:Y — X of X in L is a universal homeomorphism.

Proof: Since X is excellent, the morphism f is finite and surjective , which
implies that it is universally surjective. It is sufficient to show, that f is
universally injective. According to [?, 3.7.1] this is equivalent to the sur-
jectivity of the diagonal morphism A :Y — Y xx Y. Since X is normal
our morphism f is universally open ([?, p.24]). In particular, considering a
base change along f we see that the projection Y Xxx Y — Y is an open
morphism. It implies that each irreducible component of Y x x Y is dominant
over Y. According to the previous lemma our statment would follow if we
prove that the general fiber of the projection Y Xxx Y — Y is connected.
This fiber is a scheme Z = Spec(L) X spec(x(x)) Spec(L) and since our exten-
sion is purely inseparable one has Z,.; = Spec(L) which finish the proof.
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3.H-topology on the category of schemes 19

To prove that any h-covering admit a refinitement which is an h-covering of
the normal form, we need first to introduce some notations.

. Let Z be a closed subscheme of the scheme X. Idenote by pz : Xz — X
the blow-up of X with the center in Z. For the scheme Y — X over X,
denote by pz(Y) the closure Y xx Xz of the open subscheme Y xx Xz —
pr71(p7*(Z)). The scheme pz(Y) over Xz is called a strict transform of Y.

Theorem 3.8 (platification par eclatement) Let f: Y — X be a mor-
phism of the finite type, which is flat over an open subset U C X. Then there
exists a closed subscheme Z disjoint with U such that the strict transform
9z(Y) is flat over Xz.

Proof: See [7, 5.2].

Theorem 3.9 Let {U; =5 X} be an h-covering of the ezcellent reduced
scheme X which has the finite number of the irreducible components , then
there exists an h-covering of the normal form, which is a refinitement of {p;}.

Proof: Suppose first, that X is a normal connected scheme and all the
morphisms py are dominant and quasi-finite. Considering the normalizations
of the schemes U; we may suppose, that U; are normal and connected as
well. Let 5; : U; — X be the finite morphisms such that U; are normal and
connected and there exist the factorizations of U; —% U; £+ X, where in;
are the open immersions ([?, 1.1.8]).

There exists a connected normal scheme V and a finite surjective mor-
phism §: V — X such that it can be factorized through all the morphisms
P: and there exists the factorization of § of the form V - W - X where
W is a connected normal scheme and 7,3 correspond to the purely inseparable
and Galois extensions of the fields of functions respectively. Let V; = V xg.U.
The compositions {g; : V; — V — X} define an h-covering which is a ref-
initement of our initial one. Let G be a Galois group of the extension of the
fields which corresponds to the morphism g. Then G acts on V. Consider
the open subsets o(V;) for 0 € G. Since Ug;i(V;) = X and the morphism 7
defines a homeomorphism of the underlying topological spaces (lemma ??),
we have Uo(V;) = V. The covering {o(V;) — X} is of the normal form and
I claim that it is a refinitement of the covering {V; — X}. To see it it is
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3.H-topology on the category of schemes 20

sufficient to define a morphism from one to another as a family of morphisms
o l:0(V;) — V.

Let now X be a general reduced scheme and p; be the flat quasi-finite
morphisms. Consider a normalization X,orm, — X of X. It is a finite
morphism and X,.r» is a disjoint union of the connected normal schemes
X;. Applying the above construction to the covering U; xx X; — X; we
obtain in this case the refinitement we need.

Consider now the case of the general h-covering {p; : U; — X} of the
reduced scheme X with the finite number of the irreducible components. It
follows from [?, 11.1.1] that there exists a dense open subscheme X, of X
such that all the morphisms p; are flat over Xj. Let Z be a closed subscheme
disjoint with Xo such that the morphism f : pz(IIU;) — Xz is flat (the-
orem ??). Since Xz xx ([[U;) — Xz is an h-covering and the closure
of the complement Xz x x (I1U;) — pz (11 U;) lies over pz'(Z) and, therefore
is not dominant over any irreducible component of Xz the proposition ??
implies that f is a surjection. There exists then a quasi-finite flat surjective
morphism U’ —s Xz which can be factorized through f. The normal refi-
nitement for such type of coverings was constructed above.

3.2 Representable sheaves.

Let L be a functor Sch/S — Shvy(S) which takes a scheme X/S to the
corresponding representable sheaf, i.e L(X) is the h-sheaf associated with
the presheaf Y — Morg(X,Y). I shall also use a notation Lys; for the
corresponding functor with respect to the gfh-topology.

The question we are interisting about in this paragraph is what can be said
about the morphisms L(X) — L(Y')? Note, that the set Mor(L(X), L(Y))
coincides with the set of sections of the sheaf L(Y) over X. Therefore, to
answer our question we just need to describe a sheaf L(Y') which is associated
with the presheaf representable by Y.

Let me recall first a general construction of the sheaf associated with
the presheaf [?, 2.2],[?]. Let P be a presheaf. For any scheme X define an
equivalence relation on the set P(X), setting the sections a,b € P(X) to be
equivalent if there exists a covering {p; : U; — X} of X such that for any
z one has p;(a) = p;(b). Denote by P’ the presheaf such that P/(X) is a set
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of the equivalence classes of P(X).

For any covering Y = {p; : U; — X} denote by H°(U, P') the equal-
izer of the maps [[ P'(U;) — [l P'(U; xx U;) which are induced by the
projections. For any refinitement U’ of U/ there is defined an obvious map
H°(U,P") — H°(U',P'). We set

aP(X) = lim HU, P').

It can be shown that aP is indeed a sheaf associated with P. Note that the
natural morphism of presheaves P’ — aP is injective.
I am going now to apply this construction to the representable presheaves.

Lemma 3.10 Let X be a scheme and X,.q be its mazimal reduced sub-
scheme. Then the natural morphism Lysi(2) : Lygn(Xred) — Logn(X) s
an isomorphism.

Proof: Since the morphism z : X;.4 — X is a monomorphism in the cat-
egory of schemes and the functor L is left exact, so is L(z). From the other
hand, 7 is a qfh-covering which implies that L(z) is an epimorphism. There-
fore L(z) is an isomorphism.

Lemma 3.11 Let X be a reduced scheme and U — X be an h-covering,
then it is epimorphism in the category of schemes. In particular for any
reduced X and any Y the natural map Mors(X,Y) — Mor(L(X), L(Y))

is injective.

Proof: It follows immediately from the fact that h-coverings are surjective
on the underlying topological spaces of schemes. For a scheme X denote by
Lo(X) a presheaf we obtain on the first step of the construction of the sheaf
L(X) which is described above. Two previous lemmas shows that for any
scheme Y one has Lo(X)(Y) = Mors(Y,ea, X)-

Lemma 3.12 Let X = Spec(K), where K is a field, then for any scheme Y
one has Mor(L(X), L(Y)) = Mor(Lgs1(X), Lysa(Y)) = Y(K'), where K’ is
a mazimal purely inseparable extension of the field K.
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Proof: It follows immediately from the previous lemma and the remark
that the extension L of K is purely inseparable if and only if the diago-
nal A : Spec(L) — Spec(L) X speeicy Spec(L) induces the isomorphism of
Spec{L) with (Spec(L) X spectty Spec(L))es

Definition 3.13 Let f : X — Y be a morphism of the finite type. It is
called radicial (resp. universal homeomorphism) if for any scheme Z — Y
over Y the morphism X Xy Z — Z induces an immersion (resp. homeo-
morphism) of the underlying topological spaces.

Proposition 3.14 Let f : X — Y be a morphism of the finite type. Then
. L(f) (resp. Lysu(f)) is a monomorphism if and only is f is radicial.

[y

o

L(f) is an epimorphism if and only if f is a universal topological epi-
morphism.

R

L(f) (resp. L :(f)) s an isomorphism if and only if f is a universal
homeomorphism.

Proof: It follows from lemma ?? that we may suppose X,Y to be the
reduced schemes.

1. The “if” part follows from the trivial observation that any radicial
morphism with the reduced source is 2 monomorphism in the category
of schemes and the left exactness of the functor L. The “only if” part
follows from the proposition ?? and the criterion that the morphism
is radicial if and only if it induces the monomorphisms on the sets of
the geometrical points (see [?]).

[
4

It is easy to show that the morphism of schemes f : X — Y induces
an epimorphism on the corresponding representable sheaves if and only
if there exists a covering U — Y which can be factorized through f.
It implies the result we need, since if there exists a universal topological
epimorphism which can be factorized through f then f is a universal
topological epimorphism itself.
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3. Suppose that f is a universal homeomorphism. Then 1t is a gfh-
covering, and, therefore, L ;:(f) is a surjection. From the other hand
any universal homeomorphism is a radicial morphism which implies,
according to (1), that L(f) is a monomorphism as well. Suppose now,
that L{{) is an isomorphism, then by (1) and (2), f is a radicial uni-
versal topological epimorphism, which obviously implies that f is a
universal homeomorphism.

Let X.Y be the schemes and f € Mor(L(X),L(Y)). I say that the h-
ocovering {p; : U; — X} realises f if there exist the morphisms f;: U; — Y
such that L(f;} = f o L(p:). kt follows from lemma ?? that in that case one
has f; 0 pr7™? = f; 0 pr5*?, where pri™? are the restrictions of the projections
U; xx U; — U; and U; xx U; — U; 1o the maximal reduced subscheme
(Us Xx U;)rez of the scheme U; xx U;. Note, that if {V;; — U — X} is
a refinitement of the h-covering {p; : U; — X} and {V;; — X realises f,
then the coverings {Vi; — U;} realize f o L{p;).

Lemma 3.15 Lei X de a reduced scheme and | € Mor{(L(X), L(Y)) ¥¢
such @ morphism, thai it can be realised on the open covering of X, then
there ezists @ morphism | € Mors(X.Y) such, that L{f)= f.

Proof: It is sufficient to notice, that since for the open subschemes U,V of
the reduced scheme X one has U xx V =UNV = (U xx V)q and the open
coverings are the effective epimorphisms in the category of schemes, one can
descended the morphism which realises { to the morphism f: X — Y.

Lemma 3.16 Lei p: X' — X be an h-covering such thai p.(Ox+) = Ox.
Then jor any f € Mor(L{X), L(Y)) which can be realised by p there exists
a morphism f € Mors(X.Y) such that L(f)= f.

Proof: Denote by f' : X’ — Y the morphism such that L(f7) = f o L(p).
Then there obviously exists a continuous map f from the underlying topo-
logical space of X to the underlying topological space of ¥ such that /' =
f o p as the continuous map. But since 2.(Ox+) = Ox, the morphism of
sheaves Oy — fI(Ox-) defines the morphism of sheaves Oy — fI(Ox) =
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fulp(Ox1)) = f,(OX), and, therefore f corresponds to the morphism of
schemes, which obviously satisfies the condition we need.

Proposition 3.17 Let f € Mor(L(X),L(Y)) be a morphism of the repre-
sentable h-sheaves, then there ezists a finite surjective morphism p: X' —s
X such that f o L(p) = L(f') for a morphism f': X' — Y.

Proof: Let {p; : U; — X} be an h-covering which realises f and f; : U; —
Y be the corresponding morphisms. According to the theorem ?? we may
suppose that our covering has a normal form. Let U; =% U - Xz = X
be a normal decomposition of p;. Consider a morphism r o s. Since it is
proper there exists a Stein decomposition of it of the form r o s=r' 0 s’ where
s’ is a proper surjective morphism ' — X’ such that s/(Op) = Ox: and '
is a finite surjective morphism. Our proposition follows now from the lemmas
?2? 22

72, ?7.

Theorem 3.18 The category L(Sch/S) (resp. Lqsns(Sch/S)) of the repre-
sentable h-sheaves (resp. ghf-sheaves) is a localization of the category SchfS
of the schemes over S with respect to the universal homeomorphisms.

Proof: It follows from the proposition ??(3) that it is sufficient to show, that
for any schemes X,Y and a morphism f € Mor(L(X), L(Y)), there exists a
universal homeomorphism Xy — X which realises f. Let p: X! — X be
a finite morphism such that there exists a morphism f’ : X' — Y satisfying
L(f’) = f o L(p). Let us define a sheaf R of the finite Ox-algebras over X
as follows. Let U be an open subset of X. Then R(U) is a subalgebra in
Ox(f'~Y(U)) which consists of those functions g € Ox:(f'~1(U)) that there
exists an element § € Mor(L(X), L(A!)), such that L(g) = g o L(p). One
can easily see, that the morphism Spec(R) — X is a finite surjective mor-
phism, which realize f. To finish the prove it is sufficient to show that it is
a universal homeomorphism. It is almost obviously.
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Proposition 3.19 Let S be a scheme of the characteristic zero, then there
is a functor R : L(Sch/S) — Sch/S left adjoint to L. For the scheme X
the scheme R(L(X)) is a semi-normalization of X (see [7]).

In particular for any seminormal scheme X and any scheme Y one has

Mor(L(X),L(Y)) = Mors(X,Y).

Proof: Let X be a normal scheme of the characteristic zero. Suppose, that
p:Y — X is the universal homeomorphism. Then considering the base
change along the immersion of the generic point of X we conclude, that p
is birational. From the other hand p is universally closed and quasi-finite,
which implies that it is finite. Then p is an isomorphism by [?, 4.4.9].

Therefore, for any scheme X of the characteristic zero and any f €
Mor(L(X),L(Y)) there exists a finite morphism p : X’ — X which re-
alize f such that p is a universal homeomorphism and the normalization of
X can be factorized through p. It follows easy from the results of [?], that
the seminormalization of X is exactly the universal morphism satisfying this
property, which finish the proof.

The situation in the positive characteristicis a bit more complicated. Roughly
speaking, there exists the analog of the functor R in that case. Namely
R(L(X)) for the integral scheme X should be a seminormalization of X in
the maximal purely inseparable extension of its field of functions. The prob-
lem is that this scheme is not in general a Netherien scheme, and, therefore
we can not construct R in the category of the Netherien schemes.

The following proposition provides us all the information we shall really
need about the sets Mor(L(X), L(Y)) in the general case.

Proposition 3.20 Let X be a normal connected scheme. Then for any
scheme Y one has:

Mor(L(X),L(Y)) = im Mors(Xy,Y)
L

where the limit is defined over the category of the purely inseparable exten-
sions of the field of functions of X and X, denotes a normalization of X in
the eztension L.

Proof: It follows almost automaticly from the above results.
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Proposition 3.21 Let Y be a scheme of the finite type over S, then the
natural morphism

Mors(X,Y) — Mor(L(X), L(Y))
is a bijection for any X if and only if Y is etale over S.

Proof: It follows from the valuative criterion for etale morphisms (see [?,
ex.17])

3.3 Sheaves Z(X) in h-topology.

Let X be a scheme over S. I denote by Z(X) ( resp. Z,s(X)) an h-sheaf
(resp. a qfh-sheaf) of the abelien groups freely generated by the sheaf of sets
L(X). Ishall also use the notations N(X),Ngs4(X) for the corresponding
freely generated sheaves of the abelien semi-groups.

For an abelien semi-group A I denote by A* an abelien group associated
with A in an obvious way.

Proposition 3.22 For any schemes X,Y over S and a section a € Zy4(X)(Y)
there ezists a finite sumectwe morphism p : U —s Y such, that 5*(a) =
2(1 — Y a;, where a,J ,a; correspond to the morphisms U — X.

Proof: According to the construction of the associated sheaf and a theorem
?? above for any a € Z41(X)(Y) there exists a covering {U; =50 2y
of the normal form such, that in}p (a) Taf — 2 ag where af,a; €
M ors(U,,X ) are such elements that af; # ag, for any j, k.

For a pair 23,7, of indexes we have

priQQoaf; =D ag ) =prs (X ad; - Y ay,)

in Zysn(X)(U;, xu Us,). Since Uy, xy Us, = U;; N U;, is reduced it implies,
that this equality also holds on the level of the formal sums of morphisms
U; — X. It means, that with respect to some order on the set of indexes
one has

* 4 *
pria;; = Praly,;
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PriG;; = Praay
There exists then a family of morphisms af;, a3 € Mors(U;, U Uy, X) such,
that

+ =gt
Cijiu;, = %

+ gt
Cijivy, = Finj
Cirr;, = %irke
iklvi, = Yizk

The statment of our proposition follows now by the induction on the
number of open subschemes U; of U.

Proposition 3.23 Let X be a normal connected scheme and p: Y — X
be a normalization of X in a Galois extension of its field of functions. Then
for any gfh-sheaf F of the abelien semi-groups an image of p* : F(X) —
F(Y) coincide with a subsemigroup F(Y)C of the Galois invariant elements
of F(Y)

Proof: Obviously Im(p*) liesin F(Y)€. Let a € F(Y)€ be a Galois invariant
element of F(Y'). Consider a scheme Y xx Y. It is a union of the irreducible
components

Y XxY = UgecY,

and Y, can be identified with Y in such a way that a restriction of the first
projection ¥ xx Y — Y becomes an identity and a restriction of the sec-
ond one is an isomorphism Y — Y induced by ¢ € G. To prove, that
a € Im(p*) it is sufficient to show, that pry(a) = pri(a) in F(Y xxY). Since
a decomposition of Y Xx Y in the union of its irreducible components is a
qfh-covering it is sufficient that for any g € G one has pri(a)y, = pri(a)y,,
which means exactly, that a is a Galois invariant.

Theorem 3.24 Let X be a scheme and Y be a normal scheme, then one
has:
Zysn(X)(Y) = Ngsn(X)(Y)*.
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Proof: Denote by F' a presheaf of the form
Y — Nogn(X)(Y)*

Obviously a gfh-sheaf associated with F' is isomorphic to Z,s4(X). In par-
ticular, there is a natural map

¢ : Ngsn(X)(Y)* — Zgsn(X)(Y)

and we have to prove that it is a bijection for normal Y. Let us show
first that ¢ is an injection. It follows immediately from the construction of
the associated sheaf, that it is sufficient to show that for any qfh-covering
{U: — Y’} a natural map

F(Y) — &;F(U;)
is injective. Note, that according to the axioms of sheaf a map
Nysa(X)(Y) — @:Ngsn(X)(U5)
is injective. Our statment now follows easily from the following lemma:

Lemma 3.25 Leta,b € Nys(X)(Y) be a pair of sections such that a+z =
b+ z for some z € Nys(X)(Y), then a =b.

Proof: There exists a covering {p; : U; — Y} of Y such, that
pi(z) =3 =5
p; (a) = Z a:k

pi(d) = Zziz
where z;;, ai, by € L(X)(Us).
Since Ngsn(X) is a sheaf it is sufficient to show that pf(a) = pf(b). An

equality
San+d zi= but+d zi

in Ngsn(X)(U;) means that there is a covering {gim : Vim —> U,} such that
for any m one has

Y Tk + D GonTi; = O Gt + D G T
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as a formal sum of sections of the sheaf L(X) over V;,,. It implies, that

Z Q?maik = z q:mbil

and, therefore, p}(a) = p;(b).

Note that an injectivity of the map ¢ which we just proved is still valid
in the context of a general site.

Let me prove now that in our case a map ¢ is also surjective. By the
proposition ?? for any a € Zys1(X)(Y") there exists a finite surjective mor-
phism p : U — Y such that 7*(a) = Y af — Y a;. We may suppose,
that Y is connected. Since Y is normal we may suppose, that 7 admit a
decomposition of the form

U2, g, By

where P, is a normalization of Y in a purely inseparable extension of its field
of functions and py is a normalization of Uj is a Galois extension of its field
of functions with a Galois group G. For any g € G we have

doaf =Y ap =) gat -3 ga;

in Zys1(X)(U) and, since U is reduced the same equality holds on the level
of the formal sums of morphisms U — X. It implies, that

Y af =) gaf
ey =) gap

in Ngsx(X)(U) and, according to the proposition ??, that there exist a pair
ak,a” of elements of Nyz(X)(Uo) such, that pj(a*) = L a} and pj(a~) =
Y a;. By lemma ?? we have N, (X)(Us) = Nysa(X)(Y)which finish the
proof.

Theorem 3.26 Let X be an affine scheme over S, then one has

Z(X) = Zen(X).
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Proof: It is sufficient to show, that for an affine scheme X a gfh-sheaf
Z,4r(X) is an h-sheaf. By the theorem ?? we have to prove only, that
Z,1(X) satisfies the axioms of sheaf for h- coverings of normal form Let Y be
a scheme over S and {U; — U—Y; — Y} be its covering of the normal
form. Let us show first that a map u : Zys(XNY) — @:Z,5n(X)U3)
is injective. Let a € Zgs(X)(Y) be an element such, that u(a) = 0. By
the proposition ?? there exists a finite surjective morphism §: V — Y
such, that g*(a) = — Y a; where af,aj; correspond to the morphisms
V — X. denote a morphlsm Yz — Y by s. Since {U; — U — Yz}
is a gfh-covering an equality u(a) = 0 implies, that s*(a) = 0 as an element
of Z,s1(X)(Yz). Consider a fiber product Yz Xy V and let pry, pr; be the
projection to Yz and V respectively. We have prjg*(a) = pris*(a) = 0 in
Yz ><y V. It implies that with respect to a suitable order on the index set we
have a 0 prz = a; 0 prz as morphisms (Yz xy V),.cd — X. Therefore, since
(Yz Xy V),,d — V;ed is an epimorphism in the category of schemes we have
al =aj on V;ea which implies, that a = 0.

Now let a; € Zysn(X)(U;) be a family of sections such, that pri(a;) =
pra(a;) in Zgsa(X)(U; xy U;) where pry : U; Xy U; — Uppre : U; Xy
U; — Uj; are projections. We have to prove, that there exists an element
a € Zysr(X)(Y) such that its restrictions on U; is equal to a;. passing to a
refinitement we may suppose, that a; = 3 a,J —3>" a;; where a;';, a;;, correspond
to the morphisms U; — X. as in the proof of the proposition ?? we see,
that there exist a family of morphisms a},a}; € Mors(U, X) such, that

“;iUi = a
a,:IU. = ay.
Consider a Stein decomposition U — W —Z5 Y of the morphism I —

Yz — Y. Since f.Op = Ow and X is affine over S one has Mors(U, X) =
Mors(W, X). Therefore our family a},a; can be descended to the family
bf,b; of morphisms W — X. Since

i at =Y ap) =3O af - ap)

in Zgsx(U xy U) and a natural morphism U xy ' — W xy W is an h-
covering it follows from the injectivity result proved above, that the same
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equality holds in Z s, (W Xy W). Since W — Y is a finite surjective mor-
phism and, therefore a gfh-covering, it implies that there exists an element
a € Zgsr(X)(Y) such, that g*(a) = b — 3 b; in Zy44(X)(W), which finish
the proof.

Proposition 3.27 Let X be a scheme over S such that there exist symmetric
powers S™X of X over S. Then the sheaves N(X),Nys,(X) are representable
by the (ind-) scheme [1,5o S™X.

Proof: It is obviously sufficient to prove our proposition in the case of qfh-
topology. Note first that a sheaf representable by [],so S™X is a sheaf of
abelien semi-group. To prove the proposition it is sufficient to show that it
satisfies a universal property of Ngs,(X). It means that for any gfh-sheaf of
abelien semi-groups G and any section a € G(X) of G over X there should
exists the unique element f € Hom(L([I,>0 S™X), G) = G(I1,,>0 S*X) which
is a homomorphism of sheaves of abelien groups and which restriction on
X = S'X is equal to a.

Consider a natural morphism ¢ : X* — S™X and let y, = ¥ pri(a) €
G(X™). It is obviously invariant with respect to the action of the symmetric
group S,. Exactly in the same way as in the proof of the proposition ?? one
can show that there exists an element f, € G(S™X) such, that ¢*(f) = yn.

It is very easy to see that an element 1@ 1 @ ... ® yn € Bnx0G(S"X) =
G(II,50 S™X) satisfies our conditions and is unique.

Proposition 3.28 Let Z be a closed subscheme of scheme X. Denote by
PNz a projectivization of the normal cone to Z in X. Then a kernel of the
map

Z11(pz) : Zosn(Xz) — Zosn(X)

is naturely isomorphic to a kernel of the map
Zosn(p) : Zosn(PNz) — Zy5n(2).

Proof: There is a morphism ker(Zgs1(p)) — ker(Zqs1(pz)) which is ob-
viously an injection. We have to prove that it is also a surjection. Let us
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consider first the case when X is our base scheme. It is sufficient to show that
for normal connected scheme Y over X and an element f € Z,(X7)(Y)
such that Zgs,(pz)(f) = O there exists a lifting of f to an element of
Zysh(PNz)(Y). Let me suppose for the simplicity that we are working in
the case of characteristic zero. Then by the proposition ?? and theorem 7?
we have
Zygn(Xz)(Y) = Homx (Y, | | S3Xz)*.
n>0

Let f=ff-% f; be a decomposition of f into the sum of indecomposable
morphisms. It is easy to see that the condition Zgsx(pz)(f) = 0 implies, that
with respect to some identification of the index sets one has

Zysn(pz)(fiF) = Zosn(pz)(f7)-

It implies that we may restrict our considerations to the case f = f+ — f~.

Consider a scheme S% Xz. One can easily see, that it is a union of closed
subschemes one of which is isomorphic to Xz and another one to S3PN3.
SinceY is irreducible and a morphism is birational our condition on f implies,
that f+(Y), f~(Y) C S3 PNz for some n, i.e. f can be lifted to an element
of Zysp(PN3z).

A statment of our proposition for a general base scheme follows now from
the propositions 77,77,

Theorem 3.29 Let X be a normal connected scheme and f: Y — X be a
finite surjective morphism of the separable degree d. Then there is defined a
morphism

tr(f) : Zosn(X) — Zgsn(Y)

such, that Z,sn(f)tr(f) = dI dzq,h(X)

Proof: We may suppose, that Y is a normalization of X in a finite extension
of the field of functions on X. There is a decomposition f = fof;, where
f1 corresponds to the separable and fo to purely inseparable extensions re-
spectively. By lemma ?? and proposition ?? a morphism fo induced an
isomorphism on the gfh-sheaves. It implies that we may restrict our consid-
erations to the case fo = Id. Let f : ¥ — X be a normalization of X in the
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Galois extension which contains K(Y). A morphism Zg54(X) — Zgsn(Y)
is nothing but a section of the sheaf Z,;(Y) over X. Let G = Gal(Y/X)
be a Galois group of ¥ over X and H = Gal(Y/ Y') be its subgroup which
corresponds to Y. By the proposition ?? it is sufficient to construct such a
section to find a section a of Z,4(Y) over Z,;4(Y) which is G-invariant. We

set
a= ) z(g),

z€G/H

where g : ¥ — Y is a natura] morphism. It is easy to see, that the corre-
sponding section of Z4z,(Y) over X satisfy all the properties we need.

3.4 Comparison results and cohomological dimen-
sion.

Theorem 3.30 Let X be a normal scheme and F be a gfh-sheaf of Q-vector
spaces, then one has

H;fh(X’ F) = H:t(X’F)

Proof: It follows from the Leray spectral sequence, that to prove our theorem
it is sufficient to show that for any normal strictly local ring R one has

Hg1(Spec(R), F) =0

for 2 > 0. It is easy to see that we actually need only to consider a case ¢ = 1.
Let a € Hy;,(Spec(R), F) be a cohomologmal class. then there exists a qfh-
covering {U; — Spec(R)} and a Cech cocycle {a:j} € ®F (Ui X spec(ry Us)
which represents a. To prove, that a = 0 it is sufficient to show, that a natural
surjection of sheaves of Q-vector spaces Z(I[U;) ® Q — Z(Spec(R)) ® Q
has a splitting. It follows from the theorem ?? above and the next lemma.

Lemma 3.31 Let X be a spectrum of the strictly local ring and {U; — X}
be a gfh-covering. Then there exists the finite surjective morphism V — X
and the splitting V — [J U;.

Proof: It is well known that we may assume that U; — X is finite and ]
the image of all other U; does not contain the closed point of X. We should
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prove that if our family of morphisms was a qfh-covering then U} — X
is surjective. Let us do it by the induction on the dimension of X. The
result is obvious for dimX < 2. Let z € X be a point of the dimension one.
Considering the base change over the embedding Z, — X, where Z. is the
closure of z we conclude that z lies in the image of U;. Therefore the image
of U7 contains all the points of the dimension 1 of X, but it is closed and
therefore coincide with all X.

Our theorem is proven.

Theorem 3.32 Let X be a scheme over S and F be a locally constant in
the etale topology sheaf on Sch/S, then F is an h-sheaf and one has

H.(X,F) = H,(X,F).

Proof: I Shall prove only the case of h-topology. The proof for qfh-topology
is similar. By the Leray spectral sequence it is sufficient to show that for a
strictly local ring R one has H}(Spec(R), F) = 0 for i > 0. We need first a
following technical result.

Lemma 3.33 Let p : Ty — T be a morphism of sites and F be a sheaf
of abelien groups on Ty such, that the sheaves on T, associated with the
presheaves U — fI}l(p‘l(U),F) are isomorphic to zero for : > 0, then
R'p.(F)=0 for:>0.

Proof: It is well known that R'p.(F) is a sheaf associated with a presheaf
U — Hi, (p~'(U), F). 1 am going to prove the result we need by the induc-
tion on ¢. for i =1 one has H}, (p~(U), F) = HE (p~(U), F) and, therefore,
R'p.(F) = 0 by our assumption. Suppose, that everything is proved for
1 < n. there is a spectral sequence

HE, (p7(U), H'(F)) = H?"(p7(V), F)

where H?(F) denote a presheaf of cohomological groups. Since, this spectral
sequence is natural with respect to U it is sufficient to show, that for any
a € I'I% (p~Y(U),HI(F)) such that p+ ¢ = n + 1 there exists a Ty-covering
{U; — U} such that the restrictions of a to each of the objects U; are zero.
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It is obviously.

I define p-topology (resp. f-topology) as a Grothendieck topology associated
to the pretopology of in which coverings are proper (resp. finite) surjective
families of morphisms. There is a following sequence of morphisms of sites:

h — topology — p — topology — f — topology.

I am going to show now that for any scheme X over S and a locally
constant in the etale topology sheaf F' one has natural isomorphisms:

Hi(X,F) = H\(X, F) = Hi(X, F).

To prove the first isomorphism it is sufficient to show by lemma ??, that
for any @ € Hi(X,F),i > 0 there exists a proper surjective morphism p :
Y — X such, that p"(a@) = 0. let {U; — U — Xz — X} be an h-
covering of the normal form which realises a. then a restriction of a to U can
be realised by the covering {U; — U}. since U is a disjoint union of the
irreducible schemes one has Hy, (U,F) = Hy (U, F) = 0, which implies
that this restriction is equal to zero.

Let us now prove the second isomorphism. Let a € I?;(X, F),;z2 > 0 be
a class which can be realised by the covering p : ¥ — X, where p is a
proper morphism. Considering a Stein decomposition ¥ 22 Y, 25 X of p,
where p; is a finite morphism and (pp).(Oy) = Oy, one can see, that it is
sufficient to show (using, once more lemma ??), that if p; is an isomorphism,
i.e. p.(Oy) = Ox, then a = 0. We may suppose, that X is connected and
F is a constant sheaf associated with a group A. Then for any Z one has
F(Z) = 8},A, where N is a number of the connected components of Z.
Now, our statment is trivial, since if X is connected and p: Y — X is such
a morphism, that p.(Oy) = Ox, then ¥ Xx ... xx Y are connected schemes.

Now we are ready to finish the prove of the theorem.

let X be a spectrum of the strictly local ring. We have to prove, that
Hi(X,F) =0 for : > 0. according to the discussion above it is sufficient to
prove, that H}(X F) =0 for z > 0. Since any scheme which is finite over X
is a disjoint union of spectrums of the strictly local rings it follows from the
spectral sequence, which connected usual and Cech cohomologies, that it is
sufficient to prove, that H}(X, F) =0 for : > 0. It follows immediately from
the next lemma.
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Lemma 3.34 Let U — X be a finite morphism over X such, that U is
connected, then the schemes U Xx ... Xxx U are connected.

Proof: See [?, p.33].

Our theorem is proven.

Theorem 3.35 Let X be a scheme of the (absolute) dimension N, then for
any h-sheaf of abelien groups and any : > n one has:

Proof: We need first the following lemma

Lemma 3.36 Let X be a scheme of the absolute dimension N, then for any
etale sheaf of the abelien groups F and any i > N one has:

H;t(XvF)®Q=O°

Proof: (cf. [?, p.221]) we use an induction on N. For N = 0 our statment is
obvious. Let z,...,zx be a set of general points of X and in; : Spec(K;) —
X be the corresponding inclusions. Consider a natural morphism of sheaves
on the small etale site over X:

F —s &%, (in;).(in;)"(F).

Then kernel and cokernel of this morphism have a support in the codimen-
sion at least one and, therefore, there cohomologies vanish in the dimension
greater then N — 1 by the inductive assumption. to finish the proof it is
sufficient now to notice, that H*(X, (in;).(in;)*(F)) ® Q = 0 by the Leray
spectral sequence of the inclusions in;.

It follows from this lemma and a theorem ?? above, that for the normal
scheme X of the dimension N and any z > 1 one has H;fh(X, F)eQ=0.
According to the spectral sequence which is connected Cech and usual
cohomologies it is sufficient to prove our theorem to show, that Hj(X, F) ®
Q=0fori> N. let « € H(X,F) ® Q be a cohomological class and
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{Ui — U — Xz — X} be an h-covering of the normal form which
realize a. Passing to the refinitement we may suppose, that Xz is normal.
Since {U; — U — Xz} is a gfh-covering a restriction of a to Xz is equal
to zero. It follows from the propositions ?? and ??, that there are defined
two long exact sequences:

. — Ezt"™Y(G,F) — H}(X,F) — Hj(Xz,F) — Ezt(G,F) — ...
and
<. — Ezt™"Y(G,F) — H}(Z,F) — Hj(PNz,F) — Ezt!(G,F) — ...

and, since dim(PNz) < dim(X) our result follows by the induction on

dim(X).
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4 Categories DM(S).

4.1 Definition and general properties

Consider a category Sch/S of schemes over a base S as a site with either h- or
qfh-topology. It has a structure of site with interval if we set I+ = AL. Mor-
phisms (u,20,21) from the definition of site with interval are multiplication
on A% and points 0, 1 respectively.

Definition 4.1 Category DM(S) is a homological category H(Sch/S, AY).
When it is necessary I specify a topology writing DMy(S) or DM,s4(S) for
h- and gfh-topologies respectively.

In this section I summarize elementary properties of this categories and cor-
responding functors M : Sch/S — DM(S). All of them follows easily from
the properties of h- and qfh-topologies which were proven in previous chapter
and general properties of the construction of the homological category of site
with interval.

I usually identify sheaves of abelien groups on Sch/S with corresponding
objects of DM(S) and schemes with corresponding representable sheaves of
sets. I also use a sign = for canonical isomorphisms.

Proposition 4.2 Categories DM(S) are tensor triangle categories. For
any morphism f : §; — S, there is defined tensor triangle functor f :
DM(S;) — DM(Sy). If X is a scheme over S; then one has f*(M(X)) =
M(X Xs Sl).

Proof: It follows immediately from the general properties of our construc-
tion and proposition ?7

Proposition 4.3 For any schemes X,Y over S one has
MX]]Y)=M(X)e M(Y)
MX xsY)=MX)oM(®Y)
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Proof: It follows from the corresponding properties of the functor Z (see
proposition ?7?).

Proposition 4.4 Let X = U UV be an open or close covering of X. Then
there is defined a natural ezact triangle in DM(S) of the form

MUNV) — MU) & M(V) — M(X) — MUNV)[1]

Proof: It follows from the proposition ??.

Proposition 4.5 Let p : Y — X be a locally trivial in Zariski topology
fibration which fibers are affine spaces, then morphism M(p) : M(Y) —
M(X) is an isomorphism.

Proof: It follows from the proposition ?? and an obvious remark that for
any scheme X a natural morphism M(pr;) : X x A® — M(X) is an iso-
morphism.

Proposition 4.6 Let X be a scheme over S and F be a sheaf on Sch/S,
then one has a natural map

H{(X,F) — DM(M(X), F[4])

Proof: It follows immediately from our construction.

Proposition 4.7 Let F be a locally free in etale topology sheaf of torsion
prime to characteristic of S , then for any scheme X one has a natural
isomorphism

DM(M(X), Fln]) = HA(X, F)
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Proof: It follows from the proposition ??, theorem ?? and a homotopy
invariance of etale cohomologies with locally constant coefficients (see [?,
p-240]).

Proposition 4.8 Let S be a scheme of characteristic p > 0, then category
DM(S) is Z[1/p]-linear.

Proof: One can easily see, that Z[1/p]-linearity is equivalent to acyclicity of
the sheaf Z/pZ. Consider Artin-Shrier exact sequence

0—2Z/pZ — G, 3G, —0

where G, is a sheaf of abelien groups representable by A! and F is a geo-
metrical Frobenious. Since G, is obviously acyclic it implies the result we
need.

Proposition 4.9 Let f : Y — X be a finite surjective morphism of the
normal connected schemes of the separable degree d. Then there is defined a
morphism tr(f) : M(X) — M(Y") such, that M(f)tr(f) = dIdn(x)-

Proof: It follows from the theorem ??

At the end of this section I want to prove the result which describes the
objects of the simplest type in DM (SpecZ).

Let X be a simplicial set. We shall call X regular if it can be represented
as the simplicial subset in A™ for some n. In this case one can define the
schematic realization of X as follows. We realize the simplex A" as a scheme

A = SpecZ[zo, ..., Ta)/(D_z: — 1).

To each face of the A™ corresponds the closed subscheme of A%, namely its
intersection with the corresponding affine subspace. We define the realiza-
tion Xz of X as a union of this subschemes corresponding to the faces of
X C A™ For general simplicial sets one can define another construction
of the schematic realization. Consider the functor from the simplicial cat-
egory A to the category Sets(SpecZ) of the sheaves of sets in h-topology
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over specZ, which turns an object [r] of A to the sheaf represented by AZ.
Using the standard construction (Kan extension) one can associate with that
functor the pair of the adjoint functors between the category A°?Sets of the
simplicial sets and Sets(SpecZ). One of them, which we denote |?|z, pro-
vides the schematic realisations for general simplicial sets.

Lemma 4.10 If X is a regqular simplicial set then the h-sheaf represented by
Xz is naturally isomorphic to | X|z.

Proof: It follows immediately from the fact that the covering of the scheme
by its irreducible components is the h-covering.

For the simplicial set X denote by C.(X) its simplicial chain complex
(i.e. the normalization of the free simplicial abelien group generated by X).

Proposition 4.11 Let X be a finite dimensional simplicial set, then M(|X |z)
is isomorphic in the DM(SpecZ) to the C.(X), which is considered as the
complez of constant sheaves on Sch/SpecZ.

Proof: Using the fact that X is an inductive limit of the finite simplicial sets
and that all our constructions are obviously compatible with the passing to
the inductive limits, we can restrict our considerations to the case of the finite
X. Let me suppose for the simplicity, that X is even a regular simplicial set.
Consider the covering of X by its maximal faces. It is an h-covering and we
obtain from it the long exact sequence which defines the resolvent of Z(X)
which terms are the sums of the sheaves of the form Z(AF). Replacing all the
sheaves Z(AF) by the constant sheaves Z we obtain the complex of sheaves
which represents the same object in the category DM. It is sufficient to
show now that considering as the complex of the abelien groups it is quasi-
isomorphic to the C,(X). It follows immediately from the remark that it is
naturally dual to the usual Cech complex of the constant sheaf Z on X with
respect to its covering by the maximal faces.
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4.2 Motives of smooth proper schemes of the relative
dimension <1

Let p: X — S be a morphism of schemes. We denote by Picx/s a gfh-sheaf
of abelein groups associated with the flat sheaf R!p.(G.,) on Sch/S.

Theorem 4.12 Let p : X — S be a smooth projective morphism of the
relative dimension one over a normal scheme S such that p.(Ox) 2 Os.
Then there is defined a canonical eract triangle in DMys1(S) of the form

Gn[l] — M(X) — Picx/s — Gnl2].

Proof: Let me recall first several definitions (see [?, §3]). Effective Cartier
divisor Z on X is called a relative Cartier divisor on X over S if the cor-
responding closed subscheme of X is flat over S. One can easily show (loc.
cit.) that this condition is stable under base changes and multiplication of
Cartier divisors. Denote abelien semi-group of the relative Cartier divisors of
X over S by Div}z((;s and by Divx/s a gfh-sheaf of abelien groups associated
with the presheaf of the form

T/§ — (Divgya/r)*
Lemma 4.13 One has a natural isomorphism of gfh-sheaves of abelien groups:
Zr(X) = DiVX/g.

Proof: Consider a morphism ¢ : Z,s,(X) — Divxys, which corresponds
by the adjointness property of functor Z,s; to the section of Divx/s over X
defined by the diagonal X — X x5 X (it is a relative Cartier divisor, since
p is smooth and S is normal, see [?, 21.14.3]). We want to prove, that ¢ is
an isomorphism.

Let us prove first, that ¢ is a monomorphism. Consider aq section u €
Zysh(X)(T) of Zys1(X) over T/S. There exists a gfh-covering U — T such,
that the corresponding section u’ over U has a form

u = Zu;" — Zu]',
+

where u;",u; are morphisms U — U xs X. It is sufficient to show, that
u' = 0 if ¢(v’') = 0. Since normalization is a gfh-covering, we may suppose
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that U is a disjoint union of normal connected schemes. It is obviously
sufficient to consider a case of the connected U. Let Z;" (resp. Z;) be a
Cartier divisor of U x5 X over U which corresponds to u«;} (resp. uj). Since
these divisors are irreducible an equality 3> Z* — 3° Z; = 0in Divxs(U)
implies, that with respect to some identification of the index sets one has
Z# = Z7, which means, that u’ = 0.

Let us show now that ¢ is epimorphism. Let Z € Divx/s(T) be a section
of the sheaf Divy/s over T. One can easily see, that there exists a gfh-
covering U — X such that the corresponding section Z’ over U is of the form
Z' =Y n}ZF - > n; Z;, where Z*,Z7 are the divisors, which correspond
to U-points of X xg U. Therefore Z’ is contained in the image of ¢, which
implies, that the same is true for Z because of the injectivity of ¢.

For a scheme X denote by X*(X) a multiplicative group of the invertible
elements of the total quotient ring of X (see [?, p.140]).

Let MY%/s be a gfh-sheaf of abelien groups associated with a presheaf of
the form:

subgroup of K*(X xsT) which consists of the el-
T/S — ements f such that the divisor D(f) of f is a rel-

ative Cartier divisor of X xgT over T

Lemma 4.14 There is defined a following ezact sequence of the gfh-sheaves
of abelien groups over S

0 — Gy — Myys — Zysh(X) — Picx/s — 0.

Proof: Definition of the morphisms in this sequence as well as exactness in
all terms except last one is trivial. A surjectivity of the morphism Zs,(X) =
Divy/s — Picx/s is proved in the case of flat topology in [?], which implies
our result because of the exactness of the functor of associated sheaf.

To prove our theorem it is sufficient now to show, that M x/s is acyclic. We
are going first to construct a presheaf F' of abelien semi-groups on Sch/S
such, that gfh-sheaf of abelien groups associated with F is isomorphic to
Mx/s and F is (ind-) representable.

Denote by £ a very ample sheaf on X. We may suppose, that Rip.(L) = 0
for ¢ > 0 and that there exists a section sg : Ox — calL of calL over X
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such, that the corresponding divisor Z — X is a relative Cartier divisor of
X over S.

For any T over S define a set F(T') as a direct limit with respect to
so of the sets F,(T) of nonzero sections of pri(£®") over X xs T which
correspond to the relative Cartier divisors on X XgT over T. One can easily
see that F : T — F(T) is a presheaf of abelien semigroups on Sch/S with
respect to the abelien semi-group structures on F(T') given by the tensor
multiplication of sections. As a presheaf of sets F is a direct limit of the
presheaves F,, : T — F,(T).

Lemma 4.15 A gfh-sheaf of abelien groups associated with F is isomorphic
to Mxys.

Proof: Let us first construct a morphism of presheaves ¢ : F — Myxys.
For any section f of F), over T we define ¢(f) as an element of K*(X xsT') of
the form f/pri(so)®". One can easily see, that ¢ is well defined. Denote by
F* a gfh-sheaf of abelien groups associated with F' and by ¢+ a morphism

F+—>MX/5

which corresponds to ¢. we are going to show, that ¢+ is an isomorphism.
It is obviously a monomorphism. To prove, that it is isomorphism it is suffi-
cient, therefore to show, that for any section g € M X§(T) of Mx/s over T
there exists a gqfh-covering U — T such, that the corresponding section ¢’
of Mx/s over U is of the form ¢’ = g* — g~ where g*,g~ € F,(U) for some
n > 0. It is a direct corollary of the ampleness of L.

Lemma 4.16 For any n > 0 a direct image p.(L®") is a locally free sheaf
on S and F, is represented by the complement to the zero section of the
corresponding vector bundle on S.

Proof: It follows from the results of [?] that p.(£®") is locally free sheaf. let
E.,, be a corresponding vector bundle over S and E; be a complement to the
zero section of E,. Denote by L(E}) qfh-sheaf of sets representable by E:.
There is defined an obvious morphism of presheaves F,, — L(E?), which is
injective by trivial reasons. Let us show, that the corresponding morphism
of associated sheaves is an isomorphism. Let g be a section of L(E}) over
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T. we may suppose, that T is reduced and g corresponds to the morphism
T — E7, i.e to the section of prj(£®") over X x5 T such, that the corre-
sponding divisor does not contain fibers of the projection X xsT — T. to
prove our lemma, it is sufficient to show, that such a section is contained in
F,(T), i.e., that the corresponding Cartier divisor is a relative Cartier divisor
on X xx T over T. Since T is reduced it follows from [?, 1.2.5 p.9].

Lemma 4.17 There ezists an open covering S = UU; of S such, that for
any n > 0 restrictions of p.(L®") to U; are free sheaves.

Proof: Let Z be a closed subscheme which corresponds to the divisor of the
section so of £. Since a composition po:: Z — S is a flat finite morphism
a direct image (p o £).(¢*£) is a locally free sheaf on S. Let S = UU; be an
affine open covering of S such that restrictions of both p.(£) and (poz).(:*£L)
on U; are free. I claim that this covering satisfies our condition. We prove
it by the induction by n. Suppose, that we already proved, that p.(L£®") is
free over U;. Consider an exact sequence of coherent sheaves on X:

0 —s L& — L8 H) _ £/calOx ® LB — 0

Since Rip.(L) = 0 for i > 0 there is defined an exact sequence of coherent
sheaves on S

0 — P L8 — p, LB p (L/calOx @ LE) —s 0.
One can easily see, that
p«(L]calOx ® LZ) = (p o 1).(L£)%".
Therefore this sheaf is free over U; and our exact sequence splits over U; since

U; is affine. Lemma is proven.

To prove that My/s is acyclic it is sufficient to prove that its restrictions
on U; are acyclic. It follows from our lemmas, that over U; sheaf My s is
isomorphic to the sheaf of abelien groups associated with a presheaf of abelien
semigroups, which is representable as a presheaf of sets by the (ind-)scheme

A= — {0} = lim (A" = {(0,., O)}).

We need now a following technical lemma.
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Lemma 4.18 Let F be a presheaf of abelien semi-groups on Sch/S such,
that for any regular simplicial set K and any T over S a natural morphism

F(A% Xspecz) T) — F(Kz Xspeczy T)
is surjective. Then a sheaf of abelien groups associated with F is acyclic.

Proof: Denote by F't a presheaf of abelien groups associated with F. It is
sufficient to show, that F'* is isomorphic to zero in the category DMy(S)
which is defined in the same way as DM(S) but, with respect to weakest
topology on Sch/S. Consider a simplicial presheaf S.(F) on Sch/S which
terms are internal Hom-objects in the category of presheaves of the form

Sn(F) = Hom(A% X spec(z) T F)

and face and degeneration maps defined in an obvious way. It follows im-
mediately from our assumptions, that S.(F) is a presheaf of Kan simpli-
cial abelien semi-groups with trivial homotopy groups. It implies, that
S.(F*) is a presheaf of simplicial abelien groups, which homotopy groups
are also trivial. Consider a normalization N(S.(F¥)) of S.(F*). Since ho-
motopy groups of S.(F*) are trivial it is exact complex of presheaves of
abelien groups on Sch/S. There are natural monomorphisms of presheaves
F+ — §,(F*) which assign to a section f of F'* over T a section (prs :
A% X spec(zy T T)*(f) of Sp(F*) over T. They define a monomorphism of the
complexes of presheaves of the form:

LY+ Hdoopr 8 pr B

! ! ! l !
wo = Sy(F*) = S3(FF) — Sy(F¥) — Si(FF) — So(F7)

One can easily se, that So(F*) = F* and all the vertical arrows except the
last one are isomorphisms in DMy(S). Consider a cokernel of this monomor-
phism. Since both complexes are exact it is also exact. We obtained therefore
a resolvent of F which consists of acyclic objects, which implies by ?? that
F is also acyclic.

To finish the proof of our theorem it is sufficient now to show, that a presheaf

representable by A — {0} satisfies a condition of the previous lemma. It is
obviously.
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Theorem is proven.

Corollary 4.19 A morphism M(P%) — Gp[1] which corresponds to co-
homological class in H'(P',Gy,) representable by line bundle O(1) on P¥ is
an isomorphism in DMys1(S)

Proof: Obviously.

Corollary 4.20 Let p : X — S be a smooth projective morphism of the
relative dimension one such, that p.(Ox) = Og and n be a number prime to
characteristic of S, then object M(X) X Z[nZ is representable in DM(S) by
a complez of locally constant (in etale topology) sheaves of finite groups over
S.

Proof: Obviously.

4.3 Tate motives.

All through this section I work with categories DM(S) with respect to qfh-
topology. All the results below obviously hold for h-topology as well.

Since the results of this section do not depend of the base scheme S I
omit S in all the notations below where it is possible.

Definition 4.21 Tate motive Z(1) is an object of the category DM which
corresponds to the sheaf G, shifted by minus one, i.e.

Z(1) = Gu]-1]

We denote by Z(n) n-tensor power of Z(1) and for any object X of DM by
X () a tensor product X x Z(n).

Proposition 4.22 For any n and k there ezists a following ezact triangle
Z(n) = Z(n) — pf* — Z(n)[1]

where u$™ denote an object of the category DM which corresponds to the
n-th tensor power of the sheaf pi of k-th roots of unit.
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Proof: It is sufficient to show that one has a natural isomorphism Z(n) ®
Z/kZ = p$", which is equivalent by the definition of Z(n) to the isomorphism
Goiimesn @ 7 [kZ = u¥"[n] (note that tensor product on the left side is tensor
product in the category DM which corresponds to the L-tensor product on
the level of the derive category of sheaves).

Note first that p is, by the definition, a kernel of the morphism of the
sheaves G,, — G,, which corresponds to the morphism of schemes Al —
0 — A! — 0 which takes z to zF. In h-topology it is a surjection. (It
is not true in the case of etale topology, say, where we should restrict our
considerations to the case of schemes over SpecZ[l1/k].) Therefore one has

L
G, ® Z/kZ = pi[1]. To finish the proof of the proposition one should show
L
that 4@ ® G = p®™*[1], which is easy.

For any scheme X we define its motivic cohomologies to be the groups
H?(X, Z(q)) = DM(M(X), Z(q)

When it is necessary I shall use the notations H}y, (X, Z(q)) and Hf (X, Z(q))
for these groups defined with respect to qfh- and h-topology respectively.
There is defined an obvious multiplication of the form

HP(X,2Z(q)) ® H? (X, Z(q')) — HP*(X,Z(q + )

which satisfies all standard properties. In particular a direct sum &, ,H?(X, Z(q))
has a natural structure of bigraded ring, which is commutative as a bigraded
ring by the axioms of the tensor triangle categories (see Appendix A).

Proposition 4.23 Let X be a scheme. For any q for any k prime to char-
acteristic of X one has a long ezact sequence

. — HP(X,2Z(q)) = HP(X, Z(q)) — HE(X, ) — Hlp+1)(X, Z(q)) —> ...

Proof: It follows from the proposition ?? that the only thing we have to
prove is that under our assumptions one has an isomorphism

DM(M(X)a I"?n [P]) = mt(X, ﬂ'gn)'

It follows from the proposition ?? and a remark that uf" is a locally free in
etale topology sheaf over Spec(Z[1/k]).
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Proposition 4.24 Let X be a scheme of the characteristic | then all the
groups H?(X,Z(q)) for ¢ > 0 are Z[1/1] modules.

Proof: It is a particular case of ??.

Theorem 4.25 A natural section of the sheaf G, over A! — {0} defines
isomorphism in DM 5
M(A - {0}) = Z(1)[1].

Proof: Consider a covering of P! of the form
P! = (P! - {0}) U (P — {c0})
It defines an exact sequence of the sheaves
0 — Zgra(A! — {0}) — Zon(AY) © Zogn(AY) — Zogn(PY) — 0
Since Z,sx(A?) is acyclic a morphism
Zosh(P) — Zopa(A — {ON)[1]

defined by this exact sequence is isomorphism in DM and our result follows
from ??

Theorem 4.26 Let X be a scheme and E be a vector bundle on X. Denote
by P(E) — X a projectivization of E. One has a natural isomorphism in
DM

dimE-1

M(P(E) = @ M(X)()2]-

=0
Proof: We may suppose X to be our base scheme. Let O(—1) be a tau-
tological line bundle on P(F) and a be a morphism M(P(E)) — Z(1)[2]
in the category DM(X) which corresponds to the class of this bundle in
HY(P(E),Gn). Using a morphism M(P(E)) — M(P(E)) ® M(P(E)) in-
duced by the diagonal we can define elements a' € DM(M(P(E)), Z(i)[2i])

as tensor powers of a = a!. I claim that a direct sum
dimE-1 dimE-1

6: P d:MPE)— P Z@)[2]

=0 =0
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is an isomorphism in DM(X).

Consider a trivializing open covering X = UU; of X. Let me suppose
for a simplicity of the notations that this covering consists only of two open
subsets. By the proposition ?? we have an exact sequence of sheaves

0 — Z(UNV) — Z(U) 8 Z(V) — Z = Z(X) — 0.

Since our construction of the map ¢ is natural with respect to the restrictions
to the open subsets it is easy to see that the existence of this exact sequence
let us restrict our considerations to the case of a trivial bundle E.

In other words we should consider a scheme P” over S and prove, that a
morphism in DM (S) which is defined as

n
$=Da,
=0

where a corresponds to the line bundle O(—1) is an isomorphism. We use
an induction on n. For n = 0 our statement is trivial. Consider a covering
of P™ of the form

P"=P"—-{0}JUA"
where {0} is a point with coordinates [1,0,...,0]. We have a following exact
triangle in DM

M(A™ - {0}) — M(P" - {0}) @ M(A™) — M(P") — M(A™ — {0})[1].

I am going to construct a morhpism from this exact triangle to the exact
triangle of the form

Z(n)2n — 1] 8 Z — &2LZ()R21] 8 Z — SR, Z()[2i] — Z(a)[2n] & Z,

and to show that it is an isomorphism on the first two terms, which would
imly that it is an isomorphism of exact triangles. Define a cohomological
class ¥ € H™1(A™— {0}, GS") as follows. Consider a covering of the scheme
A" — {0} of the form

A*—{0}=|]JA" - H;
=1

where H; is a hyperplane z; = 0. A Cech cocycle in Z*~1(A"* — {0},GS")
with respect to this covering is nothing but a section of the sheaf GS* over
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NE,A™ — H;. So we set ¥ to be a cohomological class which corresponds to
a tautological section of the form

(Z15 209 Tn) = 21 ® ... @ Tn.

Define a morphism f : M(A™ — {0}) — Z(2)[2n — 1] © Z as a direct sum of
the morphism which corresponds to ¥ and a structural morphism.

Lemma 4.27 f is an isomorphism.

Proof: Easy by the induction on n starting with a theorem ??

Let p : P* — {0} — P*! be a natural projection which fibers are affine
lines. It is obviously an isomorphism in DM. Define now a morphism g :
MP"~{0})o M(A™) — &5 Z(1)[2i]® Z as a direct sum of the morphism

9?:? M (p)afz—l

and a structural morphism of A™. Note, that ¢ is an isomorphism accord-
ing to our inductive assumption. I claim now that a family of morphisms
f,9,%, fI1] is indeed a morphism of the exact triangles. To prove it one has
to verify a commutativity of three squares. It is almost tautology.

Theorem is proven.

4.4 Characteristic classes

In this section I construct for any scheme X a family of maps
¢ : Ki(X) — H™ (X, 2(1))

from Quillen K-groups (of locally free sheaves) to our motivic cohomologies,
which satisfies all the usual properties of the characteristic classes.

All through this section I am working with gfh-topology. To obtain char-
acteristic classes which take value in the motivic cohomology groups defined
with respect to h-topology one should just consider a composition of CJ’: with
a natural map from one cohomologies to another.
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We shall construct firs our classes for Ko. Let X be a (which I suppose
to be connected for a simplicity) scheme and F be a vector bundle on X.
We use an induction on dim(FE). If dim(E) = 1 then it defines a class
in H(X,Gy,) and, therefore a class ¢ in the group H?(X,Z(1)). We set
3(E) = 1,&8(E) = c and all the higher classes are equal to zero.

Suppose now that dim(E) = n. Denote by p : P(E) — X a projec-
tivization of X considering as a scheme over X. By the theorem ?? above
we have a decomposition:

dimE~-1

MPE)= @ MX)G)Ri

i=0

Consider an inverse image p*(E) of F with respect to the projection p. It
contains one dimensional subbundle F' C F. By the induction there is defined
an element

(8c(F)) ® (8€(E/F)) € ;H¥(P(E), Z(3))

where ® here means a multiplication in the ring of motivic cohomologies of
P(E). A decomposition above defines a morphism M(X) — M(P(FE)) and
we set cJ(E) to be the components of an inverse image of this class with
respect to this morphism.

It is very easy to see that this construction defines indeed a family of maps
from Ko(X) to the corresponding motivic cohomologies, which is natural
with respect to the morphisms of scheme ( but not in general with respect
to morphisms in DM).

Hf one consider a A-ring H(X) associated with a graded ring &; H*( P(E), Z(j)),

then one can define a Chern character
ch : Ko(X) — H(X)

which will be a morphism of A-rings, which means that our classes satisfy all
the usual properties. The proof of this result is similar to its proof for usual
characteristic classes.

To extend our construction to the higher K-groups it is sufficient to use
a following remark. For any scheme X there is a natural homomorphism

Ki(X) — Ko(X x A,
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From the other hand almost by the definition we have
H*(X x oA, Z(j)) = H37(X, Z()) ® B3(X, Z())),

which leads immediately to the definition of the higher classes c;

In the composition with natural morphisms H%~(X, Z(j)) — H3™(X, u&
our classes give us a family of maps from K-theory to etale cohomologies
which also satisfies all the standard properties and coincide with the usual
characteristic classes for line bundles. It implies, by the well known unique-
ness theorem that they coincide with usual classes everywhere.

4.5 Monoidal transformations

All through this section I am working with gfh-topology. In particular a
notation DM(S) is used for a category DMyn(S).

Let us recall some notations. Fos a scheme X and its closed subscheme Z
we denote by Xz a blow up of X with a center in Z and by pz : Xz — X
a corresponding projection.

By PNz we denote a projectivization of a normal cone to Z in X and by
p: PNz — Z a natural morphism, which is a restriction of pz. Let Ox(2)
be a kernel of the corresponding morphism of gfh-sheaves

Zos1(p) : Zosn(PNz) — Zgsn(2).

By the proposition ?? it is naturally isomorphic to the kernel of the morphism
Zqsn(pz)-

Theorem 4.28 Let Z C X be a smooth pair over S, then a sequence of
sheaves
Ox(2) — Zysn(Xz) — Zysn(X)

defines an ezact triangle in DM(S) of the form
Ox(Z) — M(Xz) — M(X) — Ox(2)[1].

In other words a cokernel of the morphism Zysx(pz) represents zero object in
DM(S).

Proof: Let us prove first the following lemma.
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Lemma 4.29 Let X UU; be an open covering of X and Xz = UV be a cor-
responding covering of Xz. Consider long exact sequences of sheaves which
are defined by this coverings and a natural morphism between them

0 = Zep(OV) = o = 8Zeu(V)) — Zyn(Xz) — 0

l l l
0 = Zyw(NUi) = ... = BZyp(Ui) = Zgn(X) — 0

Then a complez which is a cokernel of this morphism is ezact.

Proof: An exactness of the cokernel of this morphism is equivalent to the
exactness of the kernel of this morphism. By the proposition ?? this kernel
is isomorphic to the kernel of the morphism of complexes

0 = Zyw(NViNPNz) —...— @Z,(ViNPNz) — Z,u(PNz) — 0
1 i

!
0 — quh(ﬂU{ N Z) - ... @Zqﬂ,(U{ n Z) — quh(Z) - 0

This two complexes are obviously exact, since they correspond to the covering
of PNz and Z respectively which are induced by {U;}. From the other hand
in our case normal cone to Z is a vector bundle and, therefore, a morphism
PNz — Z is flat. In particular it admits a splitting over some gfh-covering
which implies that the vertical arrows in the diagram above are surjections.
It is well known, that a kernel of a surjection of exact complexes is exact
which proves our lemma.

It follows from this lemma, that it is sufficient to prove our proposition locally.
More precisely, it is sufficient to construct an open covering X = UU; of X
such that all the cokernels of the maps Z,s.(pznv;) represent zero object in
DM(S).

Since Z C X is a smooth pair there exists a covering X = UU; such that
for any ¢ there is an etale morphism f; : U; — AN such that Z N U; =
f7Y(A*), where N = dimsX and k = dimsZ (see [?, 2.4.9]). Let U be one
of these open subschemes. We are going to prove that coker(Zys1(pzav))
represents zero object in DM(S). Denote UN Z by Y. Consider a diagram

0 = Zosn(U=Y) — Zgsa(Uy) — Zosa(Uy)/Zesn(U-Y) — 0
la 1b
0 - Zth(U_Y) - quh(U) — quh(U)/quh(U—Y) — 0
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It is easy to see that a natural morphism coker(a) — coker(b) is an iso-
morphism. It is sufficient, therefore, to prove, that coker(b) represents zero
in DM(S). We shall need a following lemma.

Lemma 4.30 Let Z — X be a closed embedding and f : U — X be an
etale surjective morphism such that U Xy Z — Z is an isomorphism. Then
one has a natural isomorphism of sheaves Z(U)/Z(U—{~1(Z)) = Z(X)/Z(X—
Z).

Proof: Consider the diagram of sheaves:

0 — Z(U—£Y(2Z)) -5 Z(U) — Z(U)/Z(U —£1(2)) — 0
! !

0 —Z(X-27) —IX) — Z(X)/Z(X=Z)—0

We are to prove that the right vertical arrow is an isomorphism. It is ob-
viously epimorphism, so, it is sufficient to prove that kerZ(f) lies in Im(z).
Note that we may prove it not for the morphisms of sheaves by for the mor-
phisms of the presheaves of the form Zo(X)(Y) = @Z(Hom(Y;, X)), where
Y; are the connected components of the scheme Y. Let Y be a connected
scheme. Then ker(Zo(f)) is a group of expressions of the form Y ;c;nig;,
where g; : Y — U such that there exists a decomposition I = [] I; such
that fog; = fog; for 2,5 € Iy and 3;cp, ni = 0 for any k. Therefore, we are
to prove only that if fog = foh for some g,k : Y — U then either g = A or
g and h can be factorized through U — f~1(Z). Let g,k be such morphisms.
Then there exists a morphism g X A: Y — U xx U, which projections are
g and h resp. To finish the proof one should notice that under the assump-
tions of our lemma there is the decomposition U xx U = A(U) 1] Uy where
A is the diagonal embedding and the projections pry, pre : Uy — U can be
factorized through U — f~1(2).

Let W = AV=* x (A¥ N f(Y)). We may replace U by f~}(W) and suppose,
that f(U) C W. Denote by V a product AV—* x Y. There is an etale
morphism of the form

Idpan-« X fj, : V — W.

Consider a fiber product V xw U and let U" = (V xw U) — (pri’(2) —
A(Z)), where A(Z) — V xw U is a diagonal. One can easily see that both
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projections pry : U/ — V and pry : U’ — W satisfy the conditions of the
lemma above.

Note now, that since our construction is based on the etale morphisms it
is natural with respect to blow up. It implies that coker(b) is isomorphic to
a cokernel of th morphism

Zosn(Y x (A" /(A5 — {0}))) — Zgsn(Y x (AN7F/(ANF — {0})).

We reduced our problem, therefore to the case of a blow up of the point on
the affine space.

It is sufficient to show, therefore that a cokernel of the morphism Zs1(A%;) —
Z,sn(A™) represents zero in DM(S), or, equivalentely, that a kernel of this
morphism is isomorphic to its cone in DM(S). It follows from the proposi-
tion ?? and a remark that A% is a total space of the vector bundle O[—1] on
P! and, therefore, M(AZ},,) is isomorphic to M(P"~"). Theorem is proven.

Theorem 4.31 Let Z C X is a smooth pair over S. Then one has a natural
isomorphism in DM(S):
M(Xz) = M(X) @ (@277 71 Z(i)[2i]).
Proof: By the theorem ?? we have an exact triangle
Ox(Z2) — M(Xz) — M(X) — 0x(2)[1].

By the definition Ox(Z)[1] is a cone of the natural morphism M(PNz) —
M(Z). Since PN(Z) is a projectivization of a normal bundle to Z in X it
follows from the theorem ??, that

Ox(Z) = @24m2-17(3)[2i)].

=1
To prove our theorem it is sufficient to construct a splitting of the exact

triangle above. Let ig : X — X x Al be an embedding of the form 75 =
Idx x {0}. Consider a diagram

Ox(Z) — OxxAl(lZX {0})

!
M(Xz) = M(X x Abyiop) ¢
l !

M(X) =  M(X xAY
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There is a canonical splitting of the morphism M(pzy{0}) by the morphism
M(X x A') = M(X) — M(X x A}, () where the last map is induced by
an obvious lifting of the embedding Idy x {1} : X — X x Al. To define a
splitting of the projection M(Xz) — M(X) (or, equivalently, of an embed-
ding Ox(Z) — M(Xz)) it is sufficient to define a splitting of the morphism
Ox(Z) — Oxxa1(Z x {0}). It existence (and, moreover a canonical choice)
follows from the theorem ??. Theorem is proven.

4.6 Gysin exact triangle.

The goal of this section is to prove the following theorem. Similarly to the
previous section I denote by DM a category DMs.

Theorem 4.32 Let Z C X be a smooth pair over S and U = X — Z. Then
there is defined a natural ezact triangle in DM(S) of the form

MU) — M(X) — M(Z)(d)[2d] — M(U)[1]
where d is a codimension of Z. In other words we have a natural isomorphism
M(X/U) = M(Z)(d)[2d] in DM(S).

Proof: Let us first construct a morphism M(X/U) — M(Z)(d)[2d] in
DM(S). Consider once more a diagram ??. A morphism [d x1: X —
X x Al has a naturallifting to X x A}, {op» Which in the composition with

M(pz) : M(Xz) — M(X) defines a morphism z; : M(Xz) — M(X x
A%y 0))- One obviously has

M (pzx{op)a1 = M(pz)io,

which implies that there exists a lifting of 2o —#; to a morphism M(Xz) —
Oxxa1(Z x {0}). It follows from the theorem ??, that this lifting is well
defined. It composition with a natural morphism

\ Y7 N E/AY

S SO PN
(Z x {8)) — Oxxai{Z x {8})/0x(2)

N ..
YAXAL\“~“ N~

can be descended to the morphism M(X) — Oxxa1(Z%x{0})/Ox(Z) which
is also well defined by the theorem ??. We have by ??

Ox(2) = &5 M(Z)(5)[2i]
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Oxxa:(Z x {0}) = @:iz1dM(Z)(3)[2:]

and, therefore

Oxxa(Z x {0})/0x(2) = M(Z)(d)[2d].

This construction provides us with a morphism M(X) — M(Z)(d)[2d]-
Considering it more carefully one can easily see, that this morphism can, in
fact, be factorized through M(X/U). Denote this last morphism M (X/U) —
M(Z)(d)[2d] by G(x,z). To finish the proof of our theorem it is sufficient to
show that it is an isomorphism in DM.

Consider first a special case X = P*, Z = {z} where z is an S-point of
P¥. In this special case our diagram 1 has a following form

MEFP-)  — M(P")
! !

g

MP7) 23 M((P" x Algyxy)
!

M@~ MENE) o arpn Al

By the theorem 4.31 we have

M(P,,) = (©7%,Z(i)[2i]) ® (752()(2i]) (2)
M((P™ x Al)zyx{o}) = (70Z(3)[2i]) ® (S}, Z(5)[21]) (3)

Let us describe these isomorphisms explicitly. Denote by a,b € H}((P™ x
A)(z3x{0} Gm) classes which correspond to the divisor szl}x {(,}(P"‘1 x A1)
and a special divisor respectively. It is easy to see that the isomorphism (3)
has a form &2 a* @ %, V. Similarly, if we denote by ag, 8 € H Y(Pty,Gm)
elements which correspond to p{‘z‘}(P“‘l) and a special divisor respectively
an isomorphism (2) can be written as ®%,a) © O] 5.

Ore obviously has

-~ -

ioa = i]_a =ag
i1 = 0,10b = bo.

which implies that the morphism kpn» ) has with respect to the isomor-
phisms above a form kpn (-} = 3. To prove that it is an isomorphism it is

=
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sufficient to show, that % = a3. since agby = 0 it is equivalent to the equality
(ao ot bo)n =0.

Consider a projection ¢ : P{;; — P™! which corresponds to the rational
map P® — P*~? which is defined as a projection from the point z to P™2.
Let c € H(P™*"!,G,,) be a class of the hyperplane. One can easily se, that

q*(c) =ao—bo

which implies our result, since ¢* is obviously zero.

To prove our theorem in general case one should use exactly the same
localization technique as in the proof of the theorem 4.28.

Theorem is proven.

E.
L
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5 Categories DM over a field of characteris-
tic zero.

5.1 One comparison result for the categories DMy,
and DM, over a field of characteristic zero.

Let k be a field of characteristic zero. Denote by ¢ : Sch/Spec(k)s —
Sch/Spec(k)qsr 2 natural morphism of sites. The goal of this section is to
prove the following theorem.

Theorem 5.1 Let k be a field of characteristic zero and X be a smooth vari-
ety over k. Then for any object F of DMys1(Speck(k)) a natural morphism

DMysn(M(X), F) ® Q — DMy(M(X), H(¢)(F)) ® Q
is bijective.

To prove this theorem we need one technical generalization of the theorem
4.28. More precisely we are going to define a class of successive blowups
(X:, fi © Xisa — X;) such, that cokernel of the composmon fo-.-fa rep-
resents zero object in DM,s;. Note, that it is not true in general, that a
cokernel of the composition of two morphisms Zgss(f), Zosa(g) such, that
coker(Zqsn(f)), coker(Z,54(g)) represent zero in DMy, represents zero.

Let (X;, D;)oci<n be a sequence of smooth pairs such that X;,; is a blow
up of X; with center in D;. Denote by f; : X;41 — X corresponding bira-
tional morphisms. Let W; be a closed subspace in X; which is the image of the
exceptional divisor of the composition f;... fa1. We say, that (X;, D;)oci<a
satisfyies a condition (*) if for any ¢ <7 — 1 a morphism

YD) = YD) n Wi — D;

is surjective.

Let Z C X be a smooth subscheme in Xp. We say that Z is transver-
sal to the sequence (X;, D;)ocicn if ZN Dy is smooth and subvarieties fg° (Zn
Do), Zz0D0s Z20D,Nfg (ZNDy) of X, are transversal to the sequence (X;, D; Jo<i<n~1-
We say that our sequence (X;, D;)ocicn satisfies a condition (**) if Xo is
transversal to it in this sense.

e L
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Proposition 5.2 Let (X;, D;joci<n be @ sequence of blowups satisfying (*)
and Z C Xo is a smooth subscheme transversal to (X;, D;)ocica- Then cok-
ernel of the natural morphism

Zy51(Z X %o Xa) = Zgsn(Z)
represents zero in DMy,

Proof: We use an induction by n. Let n = 1. We have
X1 Xx, Z = f51(Z) = Zpynz U f5 1 (Z N Dy).

Restriction of the morphism pzap, : Zznp, — Z to Z N Dy~Y(Dp) is flat
and surjective over Do which implies that it induces a surjection of the cor-
responding gfh-sheaves. Therefore a cokernel of the morphism Z 1 (X; x
XoZ) — Zy51(Z) is naturally isomorphic to the cokernel of the morphism
Z.,t1(Z20D,) — Zqsn(Z) which represents zero in DM,;; by the theorem
4.28.

Suppose now, that » > 1. denote by g a composition f,-;...f;. Consider
a following diagram:
i Zx Xo X,,, — X,,,

¥ lg
Zxx, X3 — X

1R 1 fo
Z -_— Xo

One can easily see, that there is a following exact sequence of sheaves of
abelien groups
0 — ker(Zesa(g")) — ker(Zogn(f3g')) — ker(Zosn(£3)) = coker(Zqsa(g'))

— coker(Zgsn(fog’)) — coker(Zysn(f3)) = 0

It is sufficient to prove, that coker(Z,s1(g’)) and Im(d) represent zero objects
n DMqﬂ;.
Since
Xi %0 Z = £(Z) = Zpynz U £54(Z 1 Do)

is a gfth-c ovenng it is sufficient (by the proposition 2.5) to show that coker(Z,sx(g’ ))
represents zero in DMy, to show that the following sheaves represent zero:

coker(Zqsh((Zponz N f5(Z N Do)) X x, Xa) — Zosa(Zpenz N f3(Z N Dy)))

E -
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coker(Zysh(Zpynz X X, Xa) — Zgs1(Zponz))
coker(Zqsa(f5(Z N Do) X x, Xn) — Zqgsn(fo)™'(Z N Do))

It follows from the transversality of Z to our sequence of blowups and induc-
tive assumption.

Let us consider now a sheaf Im(d). It is a cokernel of the morphism
ker(Zqsn(fog')) — ker(Zgsm(f3)). Let me show, that it is naturally isomor-
phic to the cokernel of the morphism

Zosn(f5(Z N Do) xx, Xn) = Zesa(f52(Z N Do)).

which represents zero object by the inductive assumption.
One has a patural isomorphism (by theorem 3.28)

ker(Zqesn(fo)) = ker(Zosn(f5(Do)) — Zosu(Do))
It implies (by proposition 2.7) that one has a natural isomorphism
ker(Zqsu(fo)) = ker(Zosn(f5 ' (Z N Do)) — Zqgsn(Z N D))

Let B = ker(Zysn(fo(Z N Do) Xx, Xn) — Zggu(Z N Dy)). There is a
natural morphism B — ker(Zgsi(f;)) and one can easily see from the

“proposition 2.7 that its image coincide with the image of ker(Zys(d'f3))-

An isomorphism between two cokernels we want to prove follows now easily
from the surjectivity of the morphism

- Zagn(feH(Z N Do) X x, Xa) — Zysu(Z N Do)

which is a corollary of our condition (*) on the sequence (X, D;). Proposition
is proven.

The proof of our theorem is based on the following proposition, which is
a corollary of the Hironaka’s theorem on the simplification of the coherent
sheaf of ideals ([7, ]).

Proposition 5.3 Let X be a smooth variety over a field k of character-
istic zero and f : Y —» X be a proper surjective morphism such, that
f«(Oy) = Ox. then there ezists a sequence (X, D;) of blowups which satis-
fies a condition (**) such, that Xo = X and composition fy...f, : X, — Xo
can be factorized through f.
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Proof: Note first of all, that our condition on the morphism f implies, that
there exists a coherent sheaf of ideals J on X such, that if p7 : X7 — X
is a blowup of J, then ps can be factorized through f.

Let me recall some notations from [7]. Let J be a coherent sheaf of ideals
on X. For any point z € X we denote by v.(J) maximal » such that a fiber
J- of J in z lies in the n-th power of the maximal ideal of the local ring

-Ox. of z on X. Let p7 : Xz — X be a blowup with center in smooth
connected subvariety Z of X and z € Z be a general point of Z. Let Iz
be an invertible sheaf which corresponds to the exceptional divisor of Xz.
A weak transform of J with respect to Z is defined as a coherent sheaf of
~ ideals of the form pZ'(J)I >*7)_ Let (X;, D;) be a sequence of blowups with
smooth centers D; C X; and Xy = X. Let Jo = J and Jn41 be 2 weak
transform of J; with respect to D;. Let E; C X; be an exceptional divisor
of the composition fq...f;-1 : X;i — Xo. By the theorem [7, ] there exists a
sequence (Xj, D;)ogi<n of blowups with smooth connected centers such, that

1. For any 7 > 0 a divisor E; has only normal crossings with D;.
2. For any ¢ < n one has v,(J;) = const > 0 for z € D; and J,, = Ox,,.

Obviously, the second condition implies, that the composition fo...fr : Xn —
Xbo can be factorized through pz. To finish the proof of our proposition it is
sufficient to show, that this sequence (X;, D;) satisfies our condition (**). Let
us show first that it satisfies the condition (*). it is sufficient to show, that
a morphism fg! — f51 N fi...fam1(Ea) = Do is surjective. It means, that
for any z € Do a general point Z of the fiber of fo over z is not contained in
fi-e-fa-1(Ey). Condition 2 above implies, that for any z € fi... fa-1(Er) one
has vz(J;) > 0. From the other hand »;(J;) = 0 by the definition of weak
transform and the part of condition 2, which states that v.(Jo) is constant
for z € Dy.

To finish the proof it is sufficient to notice, that condition 1 above obvi-
ously implies a transversality of X, to this sequence of blowups in our sense.

Now we are ready to prove theorem 5.1.
Proof of the theorem 5.1: Denote by DM} (resp. by DMy,) category

obtained by means of the same construction as DM} (resp. DM,s) but
using usual localization instead of strong one. By 3.35,3.30,2? and 2.18 we
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have natural bijections
DMysn(M(X), F) ® Q = DM(M(X),F) ® Q

DM,(M(X),F)® Q= DM;(M(X), F)® Q.

It is sufficient (by proposition 2.20) to show, therefore, that for any gfh-sheaf
F of Q-vector spaces such, that associated with F' h-sheaf is isomorphic to

.zero one has

DMsn(M(X), F[n]) =0

for any n € Z. It follows easily from proposition 2.14 that it is sufficient to
show that for any such F and any n > 0,k > 0 image of the natural map

HE (X x 8A™, F) — DM(M(X), F[k + 1 —n))
is zero.

Lemma 5.4 Let X be a scheme and U — X be an etale morphism. then
for any closed subscheme Z in U there exists a closed subscheme Z' in X such
that projection Xz xx U — U can be factorized through natural morphism
Uz —U.

Proof: Obviously.

Lemma 5.5 Let X be a smooth variety and F be a gfh-sheaf of Q-vector
spaces such, that associated with F h-sheaf is isomorphic to zero. Then for
any a € HY, (X, F) there ezists a closed subscheme Z of X such, thata asa
morphism Zgsi(X) — F[k] in derived category can be factorized through the
natural morphism Zyg,(X) — coker(Zysi(pz) : Zosn(Xz) — Zgsn(X))-

Proof: By the theorem 3.30 we have a natural isomorphism
H:fh(X, F) = Hekt(X, F).

It is well known (see [8, ]) that in etale topology usual cohomologies co-
incide with Cech cohomologies. There exists therefore an etale covering
U = {U; — X} of X and a section @ € F(UE) of F over UL™ which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.Categories DM over a field of characteristic zero 65

represents our cohomology class a. since h-sheaf associated with F is iso-
morphic to zero,, it follows from theorem 3.9 that there exists a blow up
p:Y — U of UL such, that a restriction of & to Y is equal to zero. It
follows from the lemma 5.4 that there exists a blowup Y’ — X such, that
a projection Y’ x x UK! — UL can be factorized through Y. Consider
complexes of sheaves of abelien groups

K = (e — Zopa(UG) — .. — Zosn(U))
and
K' = ( —_ Z,,ﬂ;(Y' Xx U§+l) —_— e ™ Zqﬂ,(Y' Xx U)).

There are resolvents of Z,;4(X) and Zgs(Y”) respectively (by proposition
2.4). It follows from our construction, that the morphism K — F[k] which
corresponds to a@ can be factorized through the cokernel of the natural pro-
jection K — K'. By the proposition 2.5 this cokernel is a resolvent of the
cokernel of the morphism Z,;4(Y’) — Z,44(X) which finish the prove of
our lemma.

let now a be a class in Hj, (X x A", F). Consider a covering
ke
LIX xA™ — X x8a™.
i=o

It follows from lemma 5.5 that there exists a closed subscheme Z in [T, X X
A" such that @ can be factorized through the natural morphism

Zqﬂ,(X X aA")  ad coker(Zqﬂ,((I_[X X A“-l)z) — Zqﬂ,(X x 0A™)).
=0

it is sufficient to prove our theorem to show that this morphism is zero in
DMqﬂ.,.
Consider a semi-simplicial scheme of the form

— — -
OX : [IXxA' : ...IXxA™?  [[X x A1
—_ - —
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A normalization of the corresponding freely generated semi-simplicial
sheaf of abelien groups is a resolvent for Z,s4(X x 0A™). Denote ([I%qy X x
A™ 1)z by Y and this semi-simplicial scheme by S. To prove our theo-
rem it is sufficient to construct a semi-simplicial scheme S’ and a morphism
F : 8’ — & such, that Fp : §) — Sp can be factorized through ¥ — S,
and all the cokernels coker(Z,sx(F;)) represent zero object in DMys;. The
existence of such morphism follows from propositions 5.3 and 5.2 by succes-
sive application of the following technical result.

Lemma 5.6 Let C be a category with fiber products and X = (X, :
Xiya — X)) be a semi-simplicial object in C. Then for any k > 0 and
any morphism f : Y — X there ezists a semi-simplicial object Y and a
morphism F : Y — calX such, that

1. Vi =Y and Fy coincide with f.

2. All the morphisms F; are compositions of the morphisms obtained by
‘ some base change of f.

Proof: Let gf : Xi — X;k=1,.., C,-j _be different compositions of face
maps of X'. We define terms of Y = (¥;,3]) as follows

Y;=X;fori <k
Yo=Y
Y= (X xx, 4 YV) Xx; oo xx: (Xi X X ik, Y)fori > k.
The definition of morphisms & : ¥; — Y; is obvious.
Theorem is proven.

Theorem 5.7 Let X be a smooth variety over a field of characteristic zero,
then one has naturel isomorphisms

Hn(Xs Z(l)) = H:c-l(x’ G’m)'
In particular H*(X,Z(1)) = Pic(X) and H*(X,Z(1)) ®Q =0 for all n > 2.

h..
E -
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Proof: Denote by 4 an inductive limit of sheaves of roots of unit. It follows
from the proposition ??, that the family of natural morphisms H:,(X,Gn) —
H*-1(X,Z(1)) can be included in the following diagram with exact strings:

cee—™  HY(X,Gn) = HLY(X,Gm)®Q — HI'(X,p) —...
1 l l
= HYYX,2(1)) - HYY(X,2(1)®Q — Hi'(X,p) —...

Where morphisms H:;1(X,p) — Hi'(X,p) are identities. To prove our
proposition it is sufficient, therefore to show, that the morphisms

H,(X,Gn)®Q — HY(X,2(1))®Q

are isomorphisms. Our theorem follows from the theorems 5.1,??, proposition
2.17 and the following lemma.

Lemma 5.8 Let X be a regular scheme, then for any n > 2 one has
HL(X,Gn)®Q =0
and for any n <1 a natural morphism
Ho(X,Gm)®Q — Hi{(X x A',Gn)®Q
is an isomorphism.

Proof: We may suppose, that X is connected. Let ¢ : Spec(K) — X be
a general point of X. There is defined a following exact sequence of sheaves
(see [8, 2.3.9]):

0—G, —:.Gr,—D—0

where

D= @ (32)s(Z)

codim(z)=1
is a direct sum of the direct images of constant sheaves on points of codi-
mension 1 on X. One can easily see (using Leray spectral sequence) that

H(X,i.Gm) 8 Q = H3(X,D)® Q =0

for n > 0. It implies the first part of our lemma. The second part follows
now from the well known homotopy invariance of Picard group over regular
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schemes.

Our theorem is proven.

5.2 Categories DMy;.

Let k be afield of characteristic zero. Denote by D My,(k) a full tensor triangle
subcategory in DM /(Spec(k)) generated by motives of the schemes of finite
type over Spec(k). In this section I shall prove some elementary properties
of these categories.

Proposition 5.9 Let X,X' be a pair of birationally equivalent schemes of
finite type over k. Denote by C (resp. C') a full tensor triangle subcategory
of DMj, which is generated by the objects M(Y') for Y such, that &im(Y) <
dim(X) and M(X) (resp. M(X’)). Then one has C =C".

Proof: It is direct corollary of the theorem of Hironaka about resolution of
singularities and our theorems 4.28 and 4.32.

Theorem 5.10 Category DMjy.(k) is generated as tensor triangle category
by the motives of smooth projective varieties.

Proof: It is a direct corollary of the proposition 5.9 and resolution of singu-
larities.

Proposition 5.11 Let X be an object of DMj:(k), then for anyn > 0 an
object X x Z[nZ is isomorphic in DMy (k) to an object which corresponds
to a finite complez of locally free (in etale topology) sheaves of finite groups
over k.

Proof:

to be continued
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A Tensor triangle categories.

I want to give here several definitions and examples concerning tensor triangle
categories, because as I know there are no any paper where such structures
would be considering.

Tensor triangle category is by the definition the category equipped by
both tensor and triangle structure together with some additional data de-
scribing there concordance.

Definition A.1 Thke tensor triangle category is the collection of the follow-
ing data:

1. Triangle category C.

2. Tensor structure on C in the sense of [|. We shall denote by ® the
tensor product on C, byaxyz : X Q@Y ®Z) — (X ®Y)® Z - the
isomorphisms of the associativity and by oxy : X @Y — Y @ X - the
isomorphisms of the commutativity in C. We assume that C is equipped with
the strict unit object Z and that (0x,x)* =1.

3. For any two objects X,Y of C - the isomorphisms:

axy : (X®Y)[i] — X ® (Y[1])

Bxy:(X®Y)1] — (X[1)®Y

This set of data should satisfy the following conditions:

1. The functors 7@ X : C — C and X®? : C — C are ezact for any
X € obC.

2. For any X,Y € obC the following diagram is commutative:

(X @ VIEZE- X @ (Y1)

oxyl(l] oxyit]

¥ @ X)1PE~ (i) @ X
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3. For any X,Y € obC the following diagram is commutative:

xovE—2 L xmerm

axy[l —axpLy

(X @ Y[I)[1] Bxyu X[ e Y[l

The morphism axy, Bxy in this definition are nothing but the compo-
nents of the natural isomorphisms of functors (7 ® X)[?] — [?](? ® X) and
(X®N)[?] — [?H(X®?) the existence of which is the part of the definition of
the exact functor.

Note that we should not include in our definition any concordance con-
ditions for axy or Bx,y and the isomorphisms of the associativity, because
they can be obtained from the standard diagrams for the tensor categories
using the isomorphisms ax z : X[1] — X ®Z[1]. In fact, the only nontrivial
point in this definition is the negative sign in the condition 3.

Proposition A.2 Let A be a tensor abelien category of the finite T or-dimension,

then the derived category D(A) of A equipped with the % is the tensor triangle
category in the sense of the above definition.

Proof: Direct computation.

Definition A.3 The tensor ezact functor from the tensor triangle category
D to the tensor triangle category D’ is the functor F : D ~—— D' which is
tensor functor with respect to the tensor structures on D,D’ and the ezact
functor with respect to the corresponding triangle structures together with the
fized isomorphism @F o [?] — [?] o F such that the following diagrams are -
commutative for any X,Y € obD:
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F(xeY)iy——FXorQi) FI(XY)1}—— F(X[1]8Y)

| | |

FX®Y)i] FX)Q F(Y)[1] F(X®Y)[1] F(X)[l] ® F(Y)

(FX) @ P %)@F(Y»m

Now I want to prove one result which shows what kind of effects one can
expect working with the tensor triangle categories.

For the pair of objects X,Y € obD denote by vxy : (X ® Y)[2] —
X[1] ® Y[1] the composition

vxy = axy(l] o Bxyy

I shall need the following lemma:

Lemma A.4 Let X,Y € obD then one has vy xooxy[2] = —OX[]YnovX.Y-

Proof: Consider the diagram:
(X V)2 (X e Y[1))I] — X[1j® Y[1]

(Y ® X)f2F—= (Y[1] ® X)[1] — Y[1] ® 1]

It is commutative according to the condition 2 of the definition A.1. The
upper string represents by the definition vx,y and according to the condition
3 of A.1 the lower string represents —yy,x which proves the lemma.

Proposition A.5 Let A be a tensor k-linear abelien category such that chark #
2, D be a tensor triangle category and F : A — D be a tensor ezact functor.

— —_—
-
3
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Suppose that X,Y .€ obA are flat objects such, that there ezists an isomor-
phism ¢ : F(A) — F(B)[1] then one has:

F(S2X) = F(/z\ Y)[2]

F( ;\X) = F(S%Y)

where S2Z and \* Z denote the simmetric and ezterior squares of an object
Z respectively.

Proof: To avoid a waste of paper I shall assume that F(Z; ® Z;) = F(Z,)®
F(Z,). Consider the decompositions X% = S2X § A’ X and Y®2 = S?Y @
A’Y (we can do it because chark # 2). Any morphism F(X®?) —
F(Y®?)[2] can be represented by 2 x 2 matrix, which “elements” are the
morphisms of the form F(S?X) — F(S%Y)[2], F(S?X) — F(A*Y)[2] etc.
It is sufficient to prove that the diagonal ones are zero, then the other two will
give us the isomorphisms we need. Let us prove, say, that the composition

F(5?X) — F(X)®F(X) — F(Y)1]®F(Y)[1] — F(Y®*)[2] — F(S*Y)[2]

is equial to zero.
Considering the commutative diagrams

F(S2X)—— F(Y)[1] ® F(Y)[1] F(Y ®2)[2]
CFYMFMN  OFw).F)2]
F(]® F(Y)[1] F(Y ®2)[2] F(S?Y)[2]

we see that to prove it is sufficient to show that the diagram

F—
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FY)1]® F(Y)[1] — F(Y® 2)[2]
CF(Y)LFY)0] l l”F(Y)»F(Y) (2]
FY)1]® F(Y)[1] — F(Y ®2)[2]

is commutative up to the multiplication by —1, which is nothing but the
statment of the lemma A.4.

2
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B Strong localization of derived categories

This appendix is devoted to the construction which we call strong localization
for the derived categories of abelien categories. It is a modification of the
construction of the localization for triangle categories due to Verdier ([12]),
which seems to be more convenient than the original one in the case of
possibly infinite Ext-dimension of the abelien category.

Let me briefly recall first an original construction by Verdier.

Definition B.1 Let D be a triangle category. A full subcategory C of D is
- called thick if it satisfies the following three conditions.

1. If X € ob(C), then for any n one has X[n] € 0b(C).
2. Let
‘ X—Y—Z— X[1]
be an ezact triangle in D such that X,Y € 0b(C), then Z € ob(C).
3. Let
xLyvy—z— z{1]
be an ezact triangle in D such, that Z € ob(C) and f can be factorized
through an object from C, then X,Y € 0b(C).

For any class P of objects of D there is a smallest thick subcategory of D
which contains all the objects from P. We denote it by < P >.

The main result of the Verdier’s theory of the localizations of triangle
categories can be formulated as follows.

Theorem B.2 Let D be a triangle category and P be a class of objects of
D. Then a localization D/A of D with respect to the class of morphisms such
that their cones lies in < P > has a natural structure of triangle category
and a functor D — D/P is universal with respect to ezact functors which
take objects of P to zero object.

Proof: See [12].

One can easily see that if D is a derived category of an abelien category A

e o J— [RSRRIN .

B
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R

Appendiz B: Strong localization of derived categories 75

constructed by means of bounded complexes, then any object of A which has
a finite resolvent consisting of the objects from P is contained in < P >,
and, therefore, represents zero in the localization D/P. If A has a finite Ext-
dimension, then one can easily see, that this remark admit a generalization.
Namely, if an object X of A has an infinite to the left resolvent consisting of
the objects from P, then it also represents zero in the localized category. In
the case of infinite Ext-dimension it is not in general true, i.e. there might
exist objects which have an infinite to the left resolvent consisting of objects
of P which do not represent zero object in the localized category.

The following definition of the strong localization let us to eliminate such
effects. Denote by D_ a full subcategory of D consisting of complexes which

-are acyclic in positive dimension.

Definition B.3 a. An object X € ob(D) is called unbounded with respect to
P if there ezists N such that for anyn > N there ezist an object Y, € ob(D-)
and a morphism X — Y,[n] in D, which represents isomorphism in the
localized category D/P.

b. A strong localization DJ/P of D with respect to P is defined as a
localization of D/ P with respect to thick subcategory generated by unbounded
objects.

Proposition B.4 Let X be an object of A such, that there ezists a resolvent
N -~ ey =1 = AL X
of X consisting of the objects from < P >, then X represents zero in D/P.
Proof: Consider an exact sequence
dn—!. d;
ker(d,) — X —> ... = X; — X
It defines a morphism X — ker(d,)[n] in D. It follows immediately from
the condition X} € ob(< P >), that this morphism represents isomorphism

in the localized category. Therefore X is unbounded, i.e. represents zero in
D/P.
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Proposition B.5 Let X be an object of D such, that for any Y € P and
any n one has '

Homp(Y, X) =0,

then
Homp,p(Z,X) = Homp(Z,X)

for any Z € ob(D).

Proof: Obviously.
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