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H3B. AKM. Hayn CCCP Math. USSR Izvestiya
Cep. MaTeM. TOM 55 (1991), J* 6 Vol. 39 (1992), No. 3

GALOIS REPRESENTATIONS
CONNECTED WITH HYPERBOLIC CURVES

UDC 512.7

V. A. VOEVODSKJl

ABSTRACT. The author considers Galois group actions on the fundamental groups of
curves of hyperbolic type, and proves certain cases of Grothendieck's conjecture about
the possibility of recovering a curve from its Galois representation.

INTRODUCTION

This paper is devoted to the proof of some theorems, related to the "fundamental
conjectures of an abelian algebraic geometry" of Grothendieck which were formulated
by him in a letter to Faltings in 1983 and in the unpublished manuscript [1]. In §1 the
concept of an elementary anabelian variety is introduced and the exact formulation
of these conjectures is given. Unfortunately, I was unable to prove them even in the
simplest cases, and that is why I am basically concerned with a weakened version of
the first of them, which I simply call the weak conjecture. I devote §2 to the proof
of the easy parts of those conjectures. At the end the weak conjecture for curves of
genus 0 is proved. A slightly different proof was independently obtained in [2]. §3
is devoted to the proof of the weak conjecture in genus 1 and to the formulation of
an analogous result for hyperelliptic curves of higher genera, which is stated without
proof. Finally, in §4 I discuss the question of describing the image of the Galois
representations associated with curves of genus 0, which is not immediately related to
Grothendieck's conjectures. The results obtained here allow me to give a description
of this image modulo a conjecture of purely combinatorial nature. The results of §2
make it possible to obtain certain information about the normalizer of this image
and to reduce the first conjecture for genus 0 to the aforementioned assumption of
combinatorial nature.

I am grateful to G. Belyi and F. Bogomolov for useful discussions, and also to
G. Shabat, who acquainted me with the remarkable work [1].

§1. T H E FUNDAMENTAL CONJECTURES OF ANABELIAN ALGEBRAIC GEOMETRY

The term "anabelian algebraic geometry" ("geometrie algebrique anabelienne")
was introduced by Grothendieck. In the broad sense it means the part of algebraic
geometry which studies the geometry and arithmetic of algebraic varieties which are
maximally "nonabelian" in a certain sense. In a letter to Faltings (1983) and in
the manuscript [1] Grothendieck formulated the two "fundamental conjectures" of
anabelian algebraic geometry. The first of them is an anabelian analogue of Serre's
conjecture about the isogenies (now proved by Faltings). The abelian analogue of the
second one would be the conjecture about the absence of infinitely divisible elements
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1282 V. A. VOEVODSKII

in the group Hl(Gal(K/K), A(K)) for an abelian variety A over a field of finite
type over Q.

Unfortunately, apparently no one knows a good definition of anabelian varieties.
However, it is clear that they should include at least the "elementary anabelian vari-
eties" whose definition I proceed to describe.

Everywhere below, Κ denotes a field of finite type over Q. It will be convenient
for us to regard Κ as imbedded in C. Denote by Κ its algebraic closure in C.
For a scheme X over Κ, denote by X the scheme Χ χ κ Spec Κ defined over Κ .
Similarly, for / : X —> Υ denote by / the corresponding morphism Χ ^ Υ.

Definition 1.1. The class of elementary anabelian varieties over Κ is defined by the
following conditions:

1. Spec AT is anabelian. _
2. A curve defined over Κ is anabelian if and only if its fundamental group is

not abelian.
3. If Z_and Υ are anabelian, so is JCJlY.
4. If Ε —> Β is a bundle whose base and fibers over all geometric points are

anabelian, then Ε is anabelian. (For our purposes it suffices to assume that Ε —> 5
is a bundle if E(C) —> B(C) is a topological locally trivial bundle.)

Remark. Perhaps it would be worthwhile to broaden our definition by regarding X
as anabelian if there exists a modular family of anabelian varieties over it, i.e., if
it is "etale" over some moduli space of anabelian varieties [4]. However, we know
so little about these varieties today that by working in such a general situation, we
would deprive ourselves of the last opportunity to prove meaningful results.

A variety X over Κ is called an elementary anabelian variety if X is anabelian
in the sense of the definition above. Everywhere below, the term anabelian variety
means elementary anabelian variety.

A justification of the term "anabelian" can be found in the simple fact that the
fundamental groups of these varieties are centerless [2]. Moreover, they are all spaces
of the type Κ (π, 1), which apparently also plays a role.

To formulate Grothendieck's conjectures we will need two constructions related
to the etale fundamental group. All necessary details can be found in [5] and [6].

Proposition 1.1. Let X be a geometrically connected scheme over the field Κ, and
let ρ 6 X{K). Then the sequence of morphisms I - » I ^ Spec A" induces an exact
sequence of fundamental groups

(1.1) 1 -^ πχ{Χ ,ρ) -* πχ{Χ ,p) -^nx{SptcK)^ 1.

For the proof, see [5]. _
The group πι (Spec AT) is canonically isomorphic to the Galois group Ga\(K/K).

I will denote it by Γ^ or simply by Γ. Denote by Out(G!) the group of the exterior
automorphisms of the group G, i.e. the quotient of Aut(G) by the automorphisms
of the type g —> hgh~x , h e G. For anabelian varieties the sequence (1.1) can be
recovered completely from the representation it defines:

(1.2) π * : Γ - » Ο ι ι ψ τ , ( Χ , ρ ) ) ,

since in this case n\{X) has no center. Observe that the groups of ΟνΛ{π\{Χ, ρ))
of exterior automorphisms_are canonically isomorphic for different ~p , and hence we
can write simply Out{n\{X)).

Consider now the ΛΓ-point ρ: Spec Κ —• X of the scheme X . It determines a
splitting of the sequence (1.1). Denote by S{X) the set of the classes of splittings of
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(1.1) equivalent under conjugation by elements of π\(Χ, ~p) (like ΟνΧ{π\{Χ)), this
set does not depend on p). We have gotten a map

(1.3) i:X(K)^S(X),

which is (in an obvious manner) functorial with respect to morphisms of schemes as
well as extensions of fields.

Each element s of S(X) determines a class of equivalent (under conjugations
by inner automorphisms) liftings of π χ to π χ (s: Γ —> Α\ιΧ(πι(Χ, ρ))). In the
anabelian case the assigning ί —> nx(s) is obviously bijective.

By fixing an element 5o of S(X) we can define the marked cohomology set
Ηι(Γ, πι(Χ,ρ)), and, as we know (see, for example, [3]), there exists a canoni-
cal bijection

ι

mapping s0 to the marked element of Hl . If j 0 = t(j>) for some ρ € X{K), then I
will denote by ip the composition of ι with the above bijection.

Example. Let X be a geometrically connected commutative algebraic group over Κ.
Then π\(Χ, 0) is canonically isomorphic to the projective limit lim Xn{K), where

Xn{K) is the group of points of order η on X(K). Consider the sequence of Galois
cohomology associated with the short exact sequence

0 -+ Xn(K) -> X(K) -> X(K) -> 0.

It defines an inclusion

X{K)/nX{K) ^ H\T, Xn(K)).

It is easy to see that the map IQ is the composition of the projective limit of these
inclusions with the natural map

X{K) -* lim X(K)/nX(K).

In particular, ίο is injective if and only if X(K) does not contain infinitely divisible
elements.

Let us return to the anabelian case. Denote by S0(X) the subsets in S(X)
consisting of those s for which there is no nontrivial g in π\(Χ,ρ~) such that
nx(s)(y)(g) = g£^ for all γ e Γ (here ε : Γ - » Ζ * is the cyclotomic character).

For groups G\ and G2 endowed with an exterior action of Γ (i.e. with repre-
sentation of the type (1.2)) denote by ExtisomriGi, G2) the set of classes of homo-
morphisms Gi —> G2 compatible (in the obvious sense) with the actions of Γ and
equivalent with respect to compositions with inner automorphisms.

Now we are ready to state Grothendieck's conjectures.

Conjecture 1. Let X and Υ be geometrically connected anabelian varieties over Κ.
Then the natural map

(1.4) Isom/KX, Y) -• ExtisomrtTt^Z), πχ(Ϋ))

is bijective. (The right-hand side is the set of all exterior isomorphisms compatible
with the representations πχ and πγ .)

Conjecture 2. If X is anabelian and geometrically connected, then the map ι estab-
lishes a one to one correspondence between X{K) and SQ(X) .

Remark. It is not so hard to show that giving a splitting of the sequence (1.1) is
equivalent to giving a compatible family of A"-models for the etale coverings of X
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defined over Κ, or, in_other words, to giving a ΑΓ-model of the subscheme which is
a universal cover for X. As will be shown later, for a complete anabelian variety X
one has SOW m S(X), and Conjecture 2 in this case asserts in particular that X(K)
is not empty if and only if the universal covering of X is defined over Κ .

In the form they are stated here, as far as I know, these conjectures have not been
proved for a single anabelian variety (except of course for Spec K). The following
weakened version of Conjecture 1, which I will call just the weak conjecture, is
simpler.

Weak Conjecture. If X and Υ are geometrically connected abelian varieties whose
fundamental groups are isomorphic as exterior Γ-modules, then X and Υ are iso-
morphic as varieties.

§2. ELEMENTARY FACTS

This section is essentially devoted to the proof of the "easy parts" of Grothendieck's
conjectures. These are, first, the injectivity of the maps (1.3) and (1.4) for anabelian
varieties, and second, the proof of the "correctness" of Conjecture 2, i.e. of the fact
that the image of an anabelian variety X under ι lies in SOW · An almost trivial
consequence of the statements obtained in the process of proving those facts is the
weak conjecture for curves of genus 0, which is proved at the end of the section.

Definition 2.1. A geometrically connected quasicompact scheme X over Κ is called
etale approximable if, for all finite extensions Ε of Κ, the maps IE '• X(E) —>
S(X(E)) are injective.

Remark. Roughly speaking, the etale approximability of a scheme X means that for
any two points ρ, q e X(E) there is an etale covering / : Υ —> X such that Γ acts
in a different manner on f~l(p) and f~l(q)·

The main theorem of this section is the following.

Theorem 1. (a) All anabelian varieties are etale approximable.
(b) The image of the map ι for anabelian X lies in SOW .

Theorem l(a) implies the injectivity of the maps (1.3) and (1.4).

Proof. We argue by induction on the dimension of X. Start with anabelian curves.
Clearly, if X is etale approximable, Ζ is geometrically connected and Ζ —> X is an
inclusion, then Ζ is etale approximable. Thus the proof of the etale approximabil-
ity of the anabelian curves reduces to proving the etale approximability for abelian
varieties (for genus greater than 0) and for Gm (for genus 0). For this it suffices
to use the computations done in Example 1.1, the Mordell-Weil theorem, and the
elementary fact that there are no infinitely divisible elements in the multiplicative
group of the field Κ.

It is harder to prove Theorem l(b). First one needs to understand how the group
Γ acts on those elements of the fundamental group of an anabelian curve which
correspond to "punctures". Let X be an anabelian curve and let X be its pro-
jectivization. A puncture on X is any Appoint ρ e X(K)/X{K). It is clear for
geometrical reasons that to each puncture there corresponds a conjugacy class of a
cyclic subgroup of πι (Χ, p). We will describe this correspondence in the language of
algebraic geometry. Denote by Xp the curve obtained by adding to X the puncture
ρ . Let (fp be the Henselization of the local ring of the point ρ e XP(K) [6]. We
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have the obvious commutative diagram of morphisms of schemes

Spec *(<?/) • X

(K(<fp) denotes the field of fractions of the ring &£). Let y be a geometric point

of SpecK{<ffi). The field K{&}}) ® Κ is the field of fractions of a strictly Henselian

discrete valuation ring, and therefore π i(Spec Κ(ffp) ®K,y) = Z(l).

Hence the morphism / determines a homomorphism /*: Z(l) —> n\(X,y),
whose image we denote by \p . Since we are taking special care of the base points,
it is defined only up to conjugation. Of course we could have defined lp on the
language of the Galois groups (as the inertia subgroup), but our definition has the
advantage that it immediately permits us to prove the following lemma.

Lemma 2.1. Let ρ be a generator in lp and let q e X{K). Then the action of Γ on
ρ with respect to the lifting nx(i(q)) is of the type ρ -* χγρ

εΜχ~ι, where ε: Γ —> Ζ*
is the cyclotomic character. _

The images [x7] of the elements x7 in n\(Xp, ~q) are well defined, and the map
7 —> [χγ] is a cocycle whose cohomology class coincides with iq(p).
Proof. It follows immediately from the definition of Henselization that

πι (Spec*?/, 7) ^ Γ ,

and so we have the following commutative diagram of fundamental groups, related
to (2.1) (I am skipping the base points):

1 1

(2-2) ^(SpecA"^*)) f" > π{(Χ)

1
It is clear that the only nontrivial part of the lemma is the one about the coincidence

of the cohomology classes. Choose a continuous section s of the homomorphism
^ ) -> Γ. We want to show that

Obviously
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from which we get

and since the centralizer of ρ in n\(X) coincides with (p) [8], we have

χγ s i ( i )(y)/. i(y)- ' (mod (/>»,

and, after going to π\{Χρ),

[χγ] = i(q)(y)i(p)(y)-1.

The lemma is proved.

This lemma shows that if X is an etale approximate curve over Κ and ρ e
X(K), then, knowing the action of Γ on πι(Χ - {/?}) and the conjugacy class of
I p , we can recover i(p) in S(X), and hence the point ρ itself. Part 2) of the
following proposition gives a characterization of the subgroups lp in terms of the
representation πχ.

Proposition 2.2. Let X be an anabelian curve over Κ. Then:
a) Γ acts on the conjugacy classes of π\(Χ) without fixed elements.
b) V S € π ι ( ^ ) and y(s) is conjugate to gt{·7^ for each y e Γ, then g e \p for

some puncture ρ.

Proof. Observe first that by passing if necessary to a finite extension of Κ we can
choose a lift of ^ t o a π ' : Γ - » ΑνΛ(πι(Χ)). We fix this lift throughout the whole
proof. Let g € πι(Χ,ρ) and let y(g) be conjugate to g for all elements γ £ Γ.
If Η is a subgroup of finite index in πι(Χ,ρ) that contains g, then one can
find a subgroup Γο of finite index in Γ such that Η is Γο-invariant and y(g) =
h(y)gh(y)~l for γ e Γο and h{y) e Η. Thus the class of g in //a b is ro-invariant.
But i/ a b can be identified with the full Tate module of the Albanese variety of the
covering corresponding to Η. This variety is an extension of an abelian variety by a
torus, and from the Mordell-Weil theorem we get that the class of g in Η is equal
to zero. It remains only to observe that if in a profinite group an element belongs
to the closure of the commutant of each subgroup of finite index containing it, then
this element is the identity.

We now prove part b).

Lemma 2.3. Let X be an anabelian curve over Κ, and let A c %\ (X) be the union of
the conjugacy classes of the subgroups lp for all punctures ρ on X. For an element
g e π\{Χ) to belong to A, it is necessary and sufficient that for each open subgroup
Η of πχ(Χ) the condition {g)nHc(AnH) holds.

For the proof, see [2].
Let g be an element of πχ(Χ) such that y(g) is conjugate to geM for all yeF,

and let Η be an open subgroup of n\{X, p). Passing to a finite extension, we may
assume that Η is Γ-invariant and that for all γ e Γ the element y(g) is //-conjugate
to ge^ . Let gn be the generator of (g) η Η. Then Γ acts on the class g" in //ab

by the formula

Let XH be the covering of X corresponding to Η and let X» be its projec-
tivization. Taking Lemma 2.3 into account, we see that it suffices to prove that the
image of [gn] in n\(XH)ab is equal to zero. This follows from the identification

i a b s T(Alb(XH)) and the well-known properties of the action of Γ on the
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Tate modules of abelian varieties (for instance from the analogue of the Riemann
conjecture, proved in this case by Weil [8]). Proposition 2.2 is proved.

Now we can finish the proof of Theorem 1. Part (a) for dimension 1 is already
proved. Assume that it is proved for dimension η and that dim X = η +1 . Consider
a bundle F —> X —> Β with anabelian F and Β . Without loss of generality we can
assume that F(K) is anabelian. Choose a point ρ e F{K). We have the following
commutative diagram of punctured sets with exact rows:

F(K) • X(K) > B(K)

Η°(Γ, π,(*)) — • Η1 (Γ, *,(F)) • //'(Γ, πχ(Χ)) > //'(Γ, πχ{Β))

The injectivity of the map ι for X follows from this diagram and from the
fact that H°(T, nx{B)) = 0 (this can be proved by a trivial induction starting with
Proposition 2.2(a)).

The induction step in the proof of part (b) is trivial, and it suffices for us to deal
with case of curves. Let ρ e X(K) and g e nx{X) be such that

for all γ e Γ. It follows from Proposition 2.2(b) that g e (p) for some puncture q
of X and some generator ρ of \q . We obtain then from Lemma 2.1 that the class
of iq{p) is trivial. But, obviously, Xq is etale approximable, and so we get ρ = q ,
which is, of course, impossible. This completes the proof of Theorem 1.

Observe now that from Lemma 2.1 and Proposition 2.2 the weak conjecture for
genus 0 follows easily in the following form.

Proposition 2.4. Let X and__Y be curves of genus 0 over Κ. Then for every iso-

morphism /*: π\{Χ) —> ny{Y) compatible with the action of Γ there exists an iso-

morphism f: X —> Υ such that K-, is conjugate to /*(%) for any puncture ρ of

Ύ.

§3. THE WEAK CONJECTURE FOR GENUS 1
AND FOR COMPLETE HYPERELLIPTIC CURVES

OF GENUS GREATER THAN 1

Theorem 2. Let E\ and £2 be affine curves over Κ of genus one. Then the existence
of an isomorphism π\(Ε\) -> πι(Ε2) compatible with the representations πΕι and
π£2 implies that £Ί « E2.

Proof. The proof of this theorem, strange as it may seem, is "effective" (in contrast
to the proof of the theorem about the isogenies of elliptic curves which is its abelian
analogue [7]). More precisely, I will construct an "algorithm" which, given G =
π\(Ε, p) and a representation π: Γ —> Out(G), allows us to compute the coefficients
of the standard equation y2 — Pi(x) and the coordinates of the punctures of the
(χ , y)-plane. Probably, using the same methods one can prove the stronger statement
about the existence of the endomorphism E\ « £ 2 over A'.

So let G be our group. I will assume that a lift π: Γ —> Aut(G) of π is given, but
none of our constructions depend on this particular choice. Using Proposition 2.2,
choose generators po, P\ , ... , pn in the cyclic groups corresponding to the punctures
Px, ... , pn . We may, obviously, assume that po is the identity of the group_,law on
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the projectivization of Ε. Denote by Η the unique normal subgroup of G for
which pi 6 Η and G/H « Z/2Z ® Z/2Z. Let pu (0 < / < η, 1 < j < 4) be
representatives of the conjugacy classes of Η belonging to GPiG~l respectively. We
may assume that ρ η = pi. It is obvious that Η together with the induced outer
action of Γ is isomorphic to π\ (Ε - {ρ ί ;, 0 < / < η , 1 < j < 4}), where the pi} are
such that 2pij = p, .

On Η there exist Γ-equivariant homomorphisms

which have the following properties:
(a) x*(Pij) m y*(pu) = 0 for / > 1 ;
(b) x*{po2) = 2p, x*{poi) = -2/?, xt(poi) ^ ^(/) 0 4 ) ^ 0, y,(Poi) = -3/?, and

where ρ is a generator of Z( 1). (As JC* and y* one can take for instance the
homomorphisms induced by the ordinary functions χ and y , which obviously lift
to morphisms Ε - {ροι, P02, Ρ03, AM} -> G m , since the pOj are points of order two
on Ε.)

Let the action of Γ on /?(J be

It is easy to see that the elements

are well denned if (i, j) Φ (0, 1), (0, 2) for *(£,,) and (/, 7) / (0, 1) for γ(ξυ),
and that they determine cocycles from Ζ ' (Γ, Z(l)) . Our "algorithm" and therefore
the proof of the theorem are completed by the following lemma.

Lemma 3.1. (a) There exists a unique {up to a sign) element δ e Z* such that δχ(ξϊ/)
and δγ{ξί]) belong to Κ.

(b) The curve Ε is isomorphic to the curve given by the equation

γ

2 = χ(χ-1)(χ-ι;ι(δχ(ξοι))).

(c) The (x, y) coordinates of the points ptj, i > 1, are given by the pairs
(Γί(δχ(ξυ)),Γι(δγ(ξυ))).

Proof. The only fact one really needs to prove is that any x» and y» satisfying
(a) and (b) up to multiplication by ε from Z* coincide with the homomorphisms
induced by the standard functions χ and y . For this it suffices to prove that if Ε is
a complete curve of genus 1 over Κ , then there is no Γ-equivariant homomorphism
π\(Ε) —> Z( l ) . This is a simple consequence of the Mordell-Weil theorem (more
precisely, even from MordelFs theorem).

This concludes the proofs of Lemma 3.1 and Theorem 2.

Before we go to the hyperelliptic curves of higher genus we prove another sim-
ple (modulo Belyi's theorem—see §4) property of the representations for anabelian
curves of genus 0 and 1.

Proposition 3.2. Let S be an anabelian curve of genus 0 or 1 . Then the representa-
tion ns is injective.

Proof. The case of curves of genus 0 is trivial (modulo Belyi's theorem), and thus we
can assume that S is an affine curve of genus 1. Consider, as in the proof of Theorem
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2, the subgroup Η in %\{S) corresponding to the standard isogeny of degree 4.
Obviously, it suffices to show the injectivity of the lift of π$ to π': Γ —> Out(//)
and to consider only the case when Ε has a unique puncture. Then Η is obviously
imbedded in πι (P1 — {0, Ι,οο,Α}) as a subgroup of index 2, and the required result
follows trivially from BelyFs theorem (see §4) and from the fact that Γ does not have
finite normal subgroups.

Remark. It seems quite plausible to assume that the representations π$ are injective
for all affine anabelian curves S.

Theorem 3. Let S\ and S2 be hyperelliptic curves, and let there exist an isomorphism
n\{S\) —* n\(S2) which commutes with the hyperelliptic involutions and is compatible
with the action of Γ. Then S\ « S2 ·

§4. THE REPRESENTATIONS ns FOR GENUS ZERO

This section is devoted to the proof of a theorem which gives, modulo a certain
combinatorial conjecture, a characterization of the image of the representations π$
for curves of the type

P 1 - {0 , 1, 00, xi, . . . , xn), x, eQ.

Using this theorem and the results of §2, I shall reduce the strong version of
Conjecture 1 for curves of genus 0 to this combinatorial conjecture.

Let S = P 1 - {0, 1, 00, x\, ... , xn}, x, e Q. The fundamental group of S can
be given by corepresentations of the type

π , ( 5 ) = (po, P\, Poo , pXl , • • • , Pxn: Λ) · · · Pxn = 1 ) ,

where pr is assigned to the corresponding p u n c t u r e . For convenience I a s s u m e

that the generators are fixed. T h e group n\(S) I d e n o t e by G. Let A be the

subgroup in O u t ( G ) consist ing of those exter ior a u t o m o r p h i s m s a for which a(pt)

is conjugate to pt{a) for all * e {0, 1, 00, x{, ... , xn) and for some ε {a) e Z*.
Lemma 2.1 implies that^for any curve of the indicated type the image of ns is
contained in A . Let A be the preimage of Η in Aut(G), and let π be a lift
of ns to a homomorphism Γ —• A. For an open subgroup Η in G, ^ienote by
PH- SH —* P 1 the corresponding unramified covering. Clearly, if α £ A then the
coverings corresponding to Η and a(H) have the "same" ramification points. More
precisely, one can define a bijection from the set of ramification points of pn to the
set of ramification points of pa(H) that preserves the ramification multiplicities and
is natural with respect to inclusions of subgroups. For a ramification point ρ on SH
I denote by a(p) the corresponding point on Sn(H) •

Denote by λ(α, b, c, d) the cross-ratio of four different points a, b , c, d on P1 .
Let Ao be the subgroup of A consisting of those automorphisms a for which for any
two subgroups f/i and H2 of genus 0 in G with ramification points a,·, b,, c,, dt,
i = 1 , 2 , of the coverings pu, respectively, the equality

λ(αχ , b\ , c{, d\) = λ(α2, b2,c2, d2)

yields the equality

λ(α(αι), a(bx), a(Cl), aidi)) = λ(α(α2), a(b2), a(c2), a(d2)).

Observe that for γ e Γ we have

λ(π(γ)(α), π{γ)ψ), n{y){c), H{y)d)) = γ(λ(α, b,c, d)),

and hence the image of π lies in Ao . Moreover it is obvious that Int(<7) c Ao . Let
Ao be the image of Ao in Out(G).
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Proposition 4.1. There exists a homomorphism <%*: Ao —> Γ, such that
(a) Int(G) c k e r ^ F , and

(b) %f% = Id r ·

Proof. First we state Belyi's theorem in a form convenient for our subsequent con-
siderations.

Theorem [8]. Let X\, ... , xn e Q. Then there exists a polynomial f such that
f{x\) = • • • = f(xn) = 0 whose finite critical values are only 0 and 1.

We_call such a polynomial a Belyi polynomial of the points x\, ... , xn. Let
χ e Q. Consider the subgroup Η of genus 0 in G corresponding to some Belyi
polynomial of the points 0 , 1 , and χ . For a e Ao set

a{x) = λ{α(0), a(\), a(oo), a(x)).

It is clear from the definition of AQ that a(x) does not depend on the freedom in
choosing Η and that this construction defines an action of Ας, on Q by permuta-
tions. Moreover, it is obvious that π(γ)(χ) coincides with γ(χ) under the canonical
action of Γ on Q, and γ(χ) = χ for γ e Int(G). To prove the proposition it
remains to check that the map transforming χ into a(x) is a field homomorphism.
It is easy to see that the validity of the following conditions is sufficient for this.

(i) a(0) = 0 and a(l) = 1.
(ii) If a + b = 2c, then a(a) + a(b) = 2Q(C) .
(iii) If ab = c2, then a{a)a{b) m a(c)2 .
The first is obvious. To prove that (ii) holds, consider the polynomial /((z - c)2)

where / is a Belyi polynomial for c1, (1 - c) 2 , {a - c)2 = {b - c)2, and 0. The
subgroup Η c G corresponding to it is contained in the subgroup H' corresponding
to / , and this inclusion corresponds to the covering ζ —> (z - c)2. It follows
immediately from the definition of AQ that the covering φ corresponding to the
inclusion a(H) C a(H') has the following properties:

1) deg?> ml.
2) φ(α(α) = φ(αφ)).
3) φ is ramified at the points a(c) and a(oo).
After the normalization a(oo) = oo we get that φ(ζ) = p(z - a(c))2 + q for some

ρ, q e Q. Now we obtain the required identity from 2).
Condition (iii) can be checked similarly. The proposition is proved.

Proposition 4.3. The normalizer of the image of the group Γ in A is contained in
Ao.

Proof. For simplicity we carry out the proof in the case η = 3 . Let a e Ao , let Hi
and H2 be subgroups of genus 0 in G, and let a,, bj, c,·, and dj be the ramification
points of the corresponding coverings. We want to show that

if λ(α\ , ... , d\) = λ(α2 , ... , d2) and the image of a in Out(G) normalizes π χ (Γ).
Using Proposition 2.4, we can reduce the problem to constructing an isomorphism

between the corresponding fundamental groups. Let

d = n\{SHi - {a,, bi, c,, d,}),
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Obviously G\ and G" can be identified with suitable subfactors of G. In this way
the automorphism a induces an isomorphism ax: G\ -* G" . Consider the diagram

Qa

Ϊ-
Gi > G2

in which φ is some Γ-equivariant isomoφhism. To finish the proof it remains
only to observe that the condition αΓα"1 c Γ (mod Int(G)) guarantees the Γ-
equivariancy of αχ

Denote by %? the descent of %? to a homomorphism AQ —* Γ.

Conjecture, ker^* = 1.

Obviously from Propositions 2.4 and 4.3 it follows that our conjecture that %*
does not have a kernel implies Grothendieck's first conjecture for genus 0 in its
strong form. On the other hand, one can show that for its proof it will be sufficient
to prove the triviality of the intersection of all open subgroups of genus 0 in G,
which is a purely combinatorial problem. (For the 1-completion of G an analogous
result was proven by Ihara [9].)
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