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Abstract

In this paper we provide a detailed construction of an equivalence between the category of
Lawvere theories and the category of relative monads on the obvious functor Jf : F → Sets
where F is the category with the set of objects N and morphisms being the functions between
the standard finite sets of the corresponding cardinalities. The methods of this paper are fully
constructive and it should be formalizable in the Zermelo-Fraenkel theory without the axiom of
choice and the excluded middle. It is also easily formalizable in the UniMath.
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1 Introduction

The notion of a relative monad is introduced in [1, Def.1, p. 299] and considered in more detail
in [2]. The categories of relative monads are parametrized by functors rather than by categories,
i.e., while one speaks of a monad on a category C one speaks of a relative monad on a functor
J : C → D. We reminds the relevant definitions and constructions of [2] in the first section of the
paper.

Following [3] we let F denote the category with the set of objects N and the sets of morphisms
MorF (m,n) being the sets of functions stn(m) → stn(n) where stn(n) = {i ∈ N | i < n} is the
standard set with n elements.

For a universe U let Sets(U) be the category of sets in U (see a detailed definition in Section 6).
For any U there is an obvious functor JfU : F → Sets(U). The main construction of the paper is
a construction of an equivalence between the category RMon(JfU ) of relative monads on JfU and
the category LW (U) of Lawvere theories in U (see [6] for the precise definition of LW (U)).

While the main idea of this construction is straightforward its detailed presentation requires a
considerable amount of work. In particular, since we work, as in [6], in the Zermelo-Fraenkel set
theory without the axiom of choice and without the excluded middle axiom, we had to reprove
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a number of results about coproducts. One of the unexpected discoveries was the fact that it is
impossible to construct the finite coproducts structure on the category F and that instead one has
to work with a weaker structure of finite ordered coproducts.

We use the diagrammatic order in writing compositions, i.e., for f : X → Y and g : Y → Z we
write f ◦ g for the composition of f and g.

We do not make precise the concept of a universe that we use for some of the statements of the
paper. It would be certainly sufficient to assume that U is a Grothendieck universe. However, it
seems likely that sets U satisfying much weaker conditions can be used both for the statements and
for the proofs of our results.

The problem/construction pairs in the paper can be interpreted in the ZF-formalization as follows.
The “problem” part is formalized as a formula P (x1, . . . , xn) with the free variables x1, . . . , xn
corresponding to the objects introduced in the problem. The “construction part” is formalized as a
theorem of the form “there exist unique x1, . . . , xn such that P (x1, . . . , xn) andQ(x1, . . . , xn)” where
Q is a formula expressing the detailed properties of the objects defined by the construction. For
example, formulas P and Q in the ZF-formalization of the problem “to construct a homomorphism
of groups H : G1 → G2” with the construction “Let G1 = Z/2, G2 = Z/2 and H = IdZ/2” will
be as follows. The formula P (G1, G2, H) will be expressing the fact that G1 is a group, G2 is a
group and H is a homomorphism from G1 to G2. The formula Q(G1, G2, H) will be expressing
the fact that G1 = Z/2, G2 = Z/2 and H equals the identity homomorphism of Z/2. One can
envision a proof assistant with the user-level language being some convenient dependently typed
language that translates this language into formulas and deductions of the ZF and then verifies
these formulas and deductions according to the rules of the first-order logic.

2 Relative monads

Definition 2.1 Let J : C → D be a functor. A relative monad RR on J or a J-relative monad is
a collection of data of the form

1. a function RR : Ob(C)→ Ob(D),

2. for each X in C a morphism η(X) : J(X)→ RR(X),

3. for each X,Y in C and f : J(X)→ RR(Y ) a morphism ρ(f) : RR(X)→ RR(Y ),

such that the following conditions hold:

1. for any X ∈ C, ρ(η(X)) = IdRR(X),

2. for any f : J(X)→ RR(Y ), η(X) ◦ ρ(f) = f ,

3. for any f : J(X)→ RR(Y ), g : J(Y )→ RR(Z),

ρ(f) ◦ ρ(g) = ρ(f ◦ ρ(g))

The following definition repeats [2, Definition 2.2, p.4].

Definition 2.2 Let J : C → D be a functor and RR = (RR, η, ρ), RR′ = (RR′, η′, ρ′) be two
relative monads on J . A morphism φ : RR → RR′ is a function φ : Ob(C) → Mor(D) that to
each X ∈ C assigns a morphism φ(X) : RR(X)→ RR′(X) such that
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1. for any X ∈ C one has η′(X) = η(X) ◦ φ(X),

2. for any f : J(X)→ RR(Y ) one has

ρ(f) ◦ φ(Y ) = φ(X) ◦ ρ′(f ◦ φ(Y ))

Lemma 2.3 Let J : C → D be a functor and RR a relative monad on J . Then the function
X 7→ IdRR(X) is a morphism of relative monads RR→ RR.

Proof: Both conditions of Definition 2.2 are straightforward to prove.

Lemma 2.4 Let J : C → D be a functor and RR,RR′,RR′′ be relative monads on J . Then if φ
and φ′ are functions Ob(C)→ Mor(D) which are morphisms of relative monads RR→ RR′ and
RR′ → RR′′ then the function X 7→ φ(X) ◦ φ′(X) is a morphism RR→ RR′′.

Proof: Let X ∈ C then

η(X) ◦ φ(X) ◦ φ′(X) = η′(X) ◦ φ′(X) = η′′(X)

this proves the first condition of Definition 2.2. To prove the second condition let f : J(X) →
RR(Y ) then we have

ρ(f) ◦ φ(Y ) ◦ φ′(Y ) = φ(X) ◦ ρ(f ◦ φ(Y )) ◦ φ′(Y ) = φ(X) ◦ φ′(X) ◦ ρ(f ◦ φ(Y ) ◦ φ′(Y ))

Problem 2.5 Let J : C → D be a functor. To construct a category RMon(J) of relative monads
on J .

Construction 2.6 Applying the same approach as before we obtain category data with the set
of objects being the set RMon(J) of relative monads on J , the set of morphisms being the set of
triples ((RR,RR′), φ) where RR, RR′ are relative monads on J and φ is a morphism of relative
monads from RR to RR′ as given by Definition 2.2, the identity morphisms are given by Lemma
2.3 and compositions by Lemma 2.4. It follows immediately from the corresponding properties of
morphisms in C that these data satisfies the left and right identity and the associativity axioms
forming a category. The set of morphisms from RR to RR′ in this category is not equal to the set
of morphisms of relative monads but it is in the obvious bijective correspondence with this set and
we will use both functions of this bijective correspondence as coercions3.

Lemma 2.7 Let φ : RR → RR′ be a morphism of relative monads on J : C → D such that for
all X ∈ C the morphism φ(X) : RR(X)→ RR′(X) is an isomorphism. Then φ is an isomorphism
in the category of relative monads on J .

Proof: Set φ′(X) = (φ(X))−1. In view of the definition of the composition of morphisms of relative
monads and the identity morphism of relative monads it is sufficient to verify that the family φ′ is a

3When a function f : X → Y is declared as a coercion then every time that one has an expression a that denotes
an element of the set X in a position where an element of the set Y is expected one replaces it by f(a)
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morphism of relative monads from RR′ to RR. That it is the inverse to φ is then straightforward
to prove.

Let us check the two conditions of Definition 2.2. The equality

η(X) = η′(X) ◦ φ′(X)

follows from the equality η′(X) = η(X) ◦ φ(X) by composing it with φ′(X) on the right and using
the fact that φ(X) ◦ φ′(X) = IdRR(X).

The second condition is of the form, for any f ′ : J(X)→ RR′(Y ),

ρ′(f ′) ◦ φ′(Y ) = φ′(X) ◦ ρ′(f ′ ◦ φ′(Y )) (1)

Applying the second condition of Definition 2.2 for φ to f = f ′ ◦ φ′(Y ) and using the equality
φ′(Y ) ◦ φ(Y ) = IdRR′(Y ) we get

ρ(f ′ ◦ φ′(Y )) ◦ φ(Y ) = φ(X) ◦ ρ′(f ′ ◦ φ′(Y ) ◦ φ(Y )) = φ(X) ◦ ρ′(f ′)

It remains to compose this equality with φ′(Y ) on the right and φ′(X) on the left and rewrite the
equalities φ(Y ) ◦ φ′(Y ) = IdRR(Y ) and φ′(X) ◦ φ(X) = IdRR′(X).

Let us remind the definition of the Kleisli category of a relative monad (see [2, p.8]).

Problem 2.8 Let J : C → D be a functor and RR be a relative monad on J . To define a category
K(RR) that will be called Kleisli category of RR.

Construction 2.9 We set Ob(K(RR)) = Ob(C) and

Mor(K(RR)) = qX,Y ∈Ob(K(RR))Mor(J(X), RR(Y ))

We will, as before, identify the set of morphisms in K(RR) from X to Y with Mor(J(X), RR(Y ))
by means of the obvious bijections.

For X ∈ Ob(C) we set IdX,K(RR) = η(X).

For f ∈Mor(J(X), RR(Y )), g ∈Mor(J(Y ), RR(Z)) we set f ◦K(RR) g = f ◦D ρ(g).

Verification of the associativity and the left and right identity axioms of a category are straightfor-
ward.

Problem 2.10 Let J : C → D be a functor and RR be a relative monad on J . To construct a
functor LRR : C → K(RR).

Construction 2.11 We set LOb = Id and for f : X → Y , L(f) = J(f) ◦D η(Y ). Verification of
the identity and composition axioms of a functor are straightforward.

The following lemma will be needed below.

Lemma 2.12 Let u : X → Y in C and g : J(Y )→ RR(Z) in D. Then one has

LRR(u) ◦K(RR) g = J(u) ◦D g
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Proof: One has

LRR(u) ◦K(RR) g = LRR(u) ◦D ρ(g) = J(u) ◦D η(Y ) ◦D ρ(g) = J(u) ◦D g

Problem 2.13 Let J : C → D be a functor and φ : RR → RR′ a morphism of relative monads
on J . To construct a functor K(φ) : K(RR)→ K(RR′) such that LRR ◦K(φ) = LRR′.

Construction 2.14 This construction is not, as far as we can tell, described in [2] and we will do
all computations in detail.

We set K(φ)Ob = Id. For f ∈MorD(J(X), RR(Y )) we set

K(φ)(f) = f ◦D φ(Y ).

For the identity axiom of a functor we have

K(φ)(IdX,K(RR)) = K(φ)(ηX) = ηX ◦D φ(X) = η′X = IdX,K(RR′)

For the composition axiom, for f ∈MorD(J(X), RR(Y )), g ∈MorD(J(Y ), RR(Z)) we have

K(φ)(f ◦RR g) = K(φ)(f ◦D ρ(g)) = f ◦D ρ(g) ◦D φ(Z) = f ◦D φ(Y ) ◦D ρ′(g ◦D φ(Z))

and

K(φ)(f) ◦RR′ K(φ)(g) = (f ◦D φ(Y )) ◦RR′ (g ◦D φ(Z)) = f ◦D φ(Y ) ◦D ρ′(g ◦D φ(Z))

The condition LRR ◦ K(φ) = LRR′ obviously holds on objects and on morphisms we have for
f ∈MorC(X,Y ):

(LRR ◦K(φ))(f) = K(φ)(LRR(f)) = K(φ)(J(f) ◦D η(Y )) = J(f) ◦D η(Y ) ◦D φ(Y ) =

J(f) ◦D η′(Y ) = LRR′(f).

Construction 2.14 is completed.

Lemma 2.15 Let J : C → D be a functor. Then one has:

1. for a relative monad RR on J , K(IdRR) = IdK(RR),

2. for morphisms φ : RR → RR′, φ′ : RR′ → RR′′ of relative monads on J , K(φ ◦ φ′) =
K(φ) ◦K(φ′).

Proof: The first assertion follows from the right identity axiom for D.

The second assertion follows from the associativity of composition in D.
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3 Binary coproducts and finite ordered coproducts in the constructive setting

In the absence of Axiom of Choice (AC) the structure of finite coproducts on a category can not
be obtained from an initial object and the structure of binary coproducts. The same, of course, is
true for products - the proof of [5, Prop.1, p. 73] essentially depends on the AC. However, binary
coproducts allow one to construct finite ordered coproducts as described below.

Definition 3.1 A binary coproducts structure on a category C is a function that assigns to any
pair of objects X,Y of C an object X q Y and two morphisms

iiX,Y0 : X → X q Y

iiX,Y1 : Y → X q Y

such that for any object W of C and any two morphisms fX : X →W , fY : Y →W there exists a
unique morphism Σ(fX , fY ) : X q Y →W such that

iiX,Y0 ◦ Σ(fX , fY ) = fX

iiX,Y1 ◦ Σ(fX , fY ) = fY

Definition 3.2 A finite ordered coproduct structure on a category C is a function that for any
m ≥ 0 and any sequence X = (X0, . . . , Xm−1) of objects of C defines an object qm−1i=0 Xi and
morphisms iiXi : Xi → qm−1i=0 Xi such that for any sequence fi : Xi → Y , i = 0, . . . ,m − 1 there
exists a unique morphism Σm−1

i=0 fi : qm−1i=0 Xi → Y such that

iiXj ◦ Σm−1
i=0 fi = fj (2)

Note that for m = 0 there is a unique sequence of the form (X0, . . . , Xm−1) - the empty sequence,
and the corresponding qm−1i=0 Xi is an initial object of C.

Problem 3.3 Given a category C with an initial object 0 and a binary coproducts structure to
construct a finite ordered coproducts structure on C.

Construction 3.4 By induction on m.

For m = 0 one defines qXi to be 0. The construction of the morphism Σfi, in this case for the
empty set of morphisms fi, and its properties follow easily from the definition of an initial object.

For m = 1 one defines qXi = X0, ii
X
0 = IdX0 and Σfi = f0. The verification of the conditions is

again straightforward.

For the successor one defines
qmi=0Xi = (qm−1i=0 Xi)qXm

and
Σm
i=0fi = Σ(Σm−1

i=0 fi, fm)

The morphisms iiXi for i = 0, . . . ,m− 1 are given by

iiXi = iiX
′

i ◦ ii
qm−1

i=0 Xi,Xm

0
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where X ′ is the sequence (X0, . . . , Xm−1), and

iiXm = ii
qm−1

i=0 Xi,Xm

1

To show that Σm
i=0fi satisfies the condition of Definition 3.4 we have:

1. for j < m

iiXj ◦Σm
i=0fi = iiXj ◦Σ(Σm−1

i=0 fi, fm) = iiX
′

j ◦ ii
qm−1

i=0 Xi,Xm

0 ◦Σ(Σm−1
i=0 fi, fm) = iiX

′
j ◦Σm−1

i=0 fi = fj

where the third equation is from the definition of a binary coproduct,

2. for j = m

iiXm ◦ Σm
i=0fi = ii

qm−1
i=0 Xi,Xm

1 Σ(Σm−1
i=0 fi, fm) = fm

To show that f = Σm
i=0fi is a unique morphism satisfying these conditions let g be another morphism

such that
iiXj ◦ g = fj

for all j = 0, . . . ,m. Both f and g are morphisms from (qm−1i=0 Xi) q Xm. By the uniqueness
condition of Definition 3.1 it is sufficient to show that

ii
qm−1

i=0 Xi,Xm

0 ◦ f = ii
qm−1

i=0 Xi,Xm

0 ◦ g

and

ii
qm−1

i=0 Xi,Xm

1 ◦ f = ii
qm−1

i=0 Xi,Xm

1 ◦ g

To prove the first equality it is sufficient, by the inductive assumption, to prove that

iiX
′

j ◦ ii
qm−1

i=0 Xi,Xm

0 ◦ f = iiX
′

j ◦ ii
qm−1

i=0 Xi,Xm

0 ◦ g

for all j = 0, . . . ,m− 1. This follows from our assumption since

iiX
′

j ◦ ii
qm−1

i=0 Xi,Xm

0 = iiXj

Similarly, the second equality follows from our assumption because

ii
qm−1

i=0 Xi,Xm

1 = iiXm.

This completes Construction 3.4.

Lemma 3.5 Let C be a category with an initial object 0 and binary coproducts structure (q, ii0, ii1).
Let (q′, ii′i) be the finite ordered coproducts structure defined on C by Construction 3.4. Then for
X = (X0, X1) one has

(q′)1i=0Xi = X0 qX1

and
(ii′)X0 = iiX0,X1

0

(ii′)X1 = iiX0,X1
1
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Proof: The proof is by unfolding Construction 3.4 in the case m = 2.

Lemma 3.6 Given a category C with the finite ordered coproducts structure (qiXi, ii
X
i ) let fi :

Xi → Y where i = 0, . . . ,m− 1 and g : Y → Z. Then one has

(Σifi) ◦ g = Σi(fi ◦ g) (3)

Proof: By the uniqueness condition of Definition 3.2 it is sufficient to show that for all i =
0, . . . ,m− 1 the precompositions of both sides of (3) with iiXi are equal. We have

iiXi ◦ (Σifi) ◦ g = fi ◦ g = iiXi ◦ (fi ◦ g)

Lemma 3.7 Let C be a category with a finite ordered coproducts structure and (X0, . . . , Xm−1) a
sequence of objects of C. Then one has

Σm−1
i=0 ii

X
i = Idqm−1

i=0 Xi

Proof: It follows from the uniqueness part of Definition 3.2.

Definition 3.8 Let (C,q, ii0, ii1) and (C ′,q′, ii′0, ii′1) be two categories with the binary coproducts
structure. A functor G : C → C ′ is said to strictly respect the binary coproduct structures if for all
X,Y ∈ C one has:

G(X q Y ) = G(X)q′ G(Y )

and
G(iiX,Y0 ) = (ii′0)

X,Y

G(iiX,Y1 ) = (ii′1)
X,Y

Definition 3.9 Let (C,q, iii) and (C ′,q′, ii′i) be two categories with finite ordered coproducts struc-
tures. A functor G : C → C ′ is said to strictly respect the finite ordered coproducts structures if for
all n ∈ N and all sequences X = (X0, . . . , Xm−1) one has

G(qmi=0Xi) = (q′)m−1i=0 G(Xi)

and for all i = 0, . . . ,m− 1 one has

G(iiXi ) = (ii′)
G(X)
i

Lemma 3.10 Let (C,q, ii0, ii1) and (C ′,q′, ii′0, ii′1) be two categories with the binary coproducts
structure and let 0, 0′ be initial objects in C and C ′ respectively. Let G : C → C ′ be a functor.
Then G strictly respects the finite coproduct structure on C and C ′ defined by the initial object and
the binary coproduct structure by Construction 3.4 if and only if one has:

1. G(0) = 0′,

2. G strictly respects the binary coproduct structure.
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Proof: The ”only if” part follows from the fact that the initial objects of C and C ′ defined by the
finite ordered coproducts structure of Construction 3.4 are 0 and 0′ and Lemma 3.5.

The proof of the ”if” part is easy by induction on the length of the sequence X = (X0, . . . , Xm) of
Definition 3.9.

Remark 3.11 It is not true in general that a finite ordered coproducts structure is determined by
the corresponding initial object and the binary coproducts structure. In particular, the converse of
Lemma 3.10 is false - a functor that strictly respects the initial object and the binary coproducts
structure defined by a finite ordered coproducts structure need not strictly respect the finite ordered
coproducts structure itself.

Lemma 3.12 Let (C,q, iii) and (C ′,q′, ii′i) be two categories with finite ordered coproducts struc-
tures and G : C → C ′ a functor that strictly respect the finite ordered coproducts structures.

Let X = (X0, . . . , Xm−1) be a sequence of objects of C and fi : Xi → Y a sequence of morphisms.
Then one has

G(Σm−1
i=0 fi) = Σm−1

i=0 G(fi) (4)

where the Σ on the left is with respect to (q, iii) and Σ on the right is with respect to (q′, ii′i).

Proof: Both the left and the right hand side of (4) are morphisms from qm−1i=0 G(Xi) to G(Y )
according to the Definition 3.9. The right hand side is the unique morphism with these domain

and codomain such that for all i = 0, . . . ,m− 1 its pre-composition with (ii′)
G(X)
i equals G(fi). It

remains to show that the same property holds for the right hand side. We have

(ii′)
G(X)
i ◦G(Σm−1

i=0 fi) = G(iiXi ) ◦G(Σm−1
i=0 fi) = G(iiXi ◦ Σm−1

i=0 fi) = G(fi)

. The lemma is proved.

4 More on the category F

Following [3] we let F denote the category with the set of objects N and the set of morphisms from
m to n being Fun(stn(m), stn(n)), where stn(m) = {i ∈ N | i < m} is our choice for the standard
set with m elements (cf. [6]).

For m,n ∈ N let iim,n0 : stn(m) → stn(m + n) and iim,n1 : stn(n) → stn(m + n) be the injections
of the initial segment of length m and the concluding segment of length n.

Lemma 4.1 One has:

1. 0 is the initial object of F ,

2. the function
(m,n) 7→ (m+ n, iim,n0 , iim,n1 )

is a binary coproduct structure on F .

Proof: We have stn(0) = ∅ and there is a unique function from ∅ to any other set.

The second assertion can be reduced to the case n = 1 by induction on n and then proved by direct
reasoning involving the details of the set-theoretic definition of a function.
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Definition 4.2 The binary coproducts structure on F defined by Lemma 4.1 is called the standard
binary coproducts structure.

The finite ordered coproducts structure on F defined by Lemma 4.1 and Construction 3.4 is called
the standard finite ordered coproducts structure.

Example 4.3 There are binary coproducts structures on F that are different from the standard
binary coproducts structure. For example, the function that is equal to the standard binary co-
products structure on all pairs (m,n) other than (1, 1) and such that 1 q 1 = 2, ii1,10 (0) = 1 and

ii1,11 = 0 is a binary coproducts structure on F that is not equal to the standard one.

Remark 4.4 It is easy to define the concept of a finite coproducts structure on a category. The
only non-trivial choice one has to make is which of the definitions of a finite set to use and it is
reasonable to define a finite set as a set for which there exists, in the ordinary logical sense, m ∈ N
and a bijection from stn(m) to this set.

One can show then that it is impossible to construct a finite coproducts structure on F without
using the axiom of choice. Indeed, one would have to define for each finite set I and a function
X : I → N the coproduct object qX = qi∈IX(i) ∈ N and a family of functions

iiXi : stn(X(i))→ stn(qX)

for i ∈ I such that for any n the function

Fun(stn(qX), stn(n))→
∏
i∈I

Fun(stn(X(i)), stn(qX))

defined by this family is a bijection. The latter condition is easily shown to be equivalent to the
condition that

stn(qX) = qi∈IIm(iiXi )

One can also prove that if such a structure exists then qX = Σi∈IX(i) where the sum on the right
is the usual commutative sum in N. Consider the case when I is a set with 2 elements and X(i) = 1
for all i ∈ I. Then qX = 2 and iiXi : stn(1)→ stn(2) are functions whose images do not intersect
and cover stn(2). Then the function i 7→ iiXi (0) is a bijection from I to stn(2), i.e., we have found
a canonical bijection from any finite set with 2 elements to stn(2). This amounts to a particular
case of the axiom of choice for the proper class of all sets with 2 elements or, if we consider finite
coproducts relative to a universe U , for the set of sets with 2 elements in U .

Lemma 4.5 Consider F with the standard finite ordered coproducts structure. Then for any m ∈
N, n0, . . . , nm−1 ∈ N one has:

1. qm−1i=0 ni = Σm−1
i=0 ni,

2. for each i = 0, . . . ,m− 1 and j = 0, . . . , ki − 1 one has

ii
(n0,...,nm−1)
i (j) = (Σi−1

l=0nl) + j

In particular, ii
(1,...,1)
i (0) = i.

Proof: By induction on m using Construction 3.4.
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5 Lawvere theories

Lawvere theories were introduced in [4]. Let us remind an equivalent but more direct definition
here.

Definition 5.1 A Lawvere theory structure on a category T is a functor L : F → T such that the
following conditions hold:

1. L is a bijection on the sets of objects,

2. L(0) is an initial object of T ,

3. for any m,n ∈ N the square
L(0) −−−→ L(n)y yL(iim,n

1 )

L(m)
L(iim,n

0 )
−−−−−→ L(m+ n)

is a push-out square.

A Lawvere theory is a pair (T, L) where T is a category and L is a Lawvere theory structure on T .

Lemma 5.2 A functor L : F → T is a Lawvere structure on T if an only if it is bijective on
objects, L(0) is an initial object of T and the function

(X,Y )→ (L(L−1(X) + L−1(Y )), L(ii
L−1(X),L−1(Y )
0 ), L(ii

L−1(X),L−1(Y )
1 ))

is a binary coproducts structure on T .

Proof: It follows by unfolding definitions and rewriting the equalities L(L−1(X)) = X and
L−1(L(n)) = n.

Definition 5.3 Let (T, L) be a Lawvere theory. The binary coproducts structure on T defined
in Lemma 5.2 is called the standard binary coproducts structure defined by (the Lawvere theory
structure) L.

The finite ordered coproducts structure on T defined by the initial object L(0) and the standard
binary coproducts structure on T by Construction 3.4 is called the standard finite ordered coproducts
structure defined by L.

Everywhere below, unless the opposite is explicitly stated, we consider, for a Lawvere theory (T, L)
the category T with the standard binary coproduct and finite ordered coproduct structures.

Lemma 5.4 Let (T, L) be a Lawvere theory. Then L strictly respects the standard finite coproduct
structures on F and T , i.e., for any m ∈ N, n0, . . . , nm−1 ∈ N one has:

1. qm−1i=0 L(ni) = L(Σm−1
i=0 ni),
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2. for any i = 0, . . . ,m− 1,

L(ii
(n0,...,nm−1)
i ) = ii

(L(n0),...,L(nm−1))
i

Proof: Simple by induction on m using the explicit form of Construction 3.4.

Lemma 5.5 Let (T, L) be a Lawvere theory and let u ∈ Fun(stn(m), stn(n)). Then one has

L(u) = Σm−1
i=0 ii

(L(1),...,L(1))
u(i)

Proof: Both sides of the equality are morphisms from L(m) to L(n) in T . Since by Lemma 5.4(1)
L(m) is the finite coproduct of the sequence (L(1), . . . , L(1)) to prove that two morphisms from

L(m) are equal it is sufficient to prove that their pre-compositions with ii
(L(1),...,L(1))
i are equal for

all i = 0, . . . ,m− 1. We have

ii
(L(1),...,L(1))
i ◦ Σm−1

i=0 ii
(L(1),...,L(1))
u(i) = ii

(L(1),...,L(1))
u(i) = L(ii

(1,...,1)
u(i) )

and
ii
(L(1),...,L(1))
i ◦ L(u) = L(ii

(1,...,1)
i ) ◦ L(u) = L(ii

(1,...,1)
i ◦ u)

It remains to show that
ii
(1,...,1)
u(i) = ii

(1,...,1)
i ◦ u

in F . Since both sides are functions from stn(1) it is sufficient to prove that their values on 0 are
equal. This follows from Lemma 4.5.

Recall that a morphism of Lawvere theories G : (T, L)→ (T ′, L′) is a functor G : T → T ′ such that
L ◦G = L′.

Lemma 5.6 Let G : (T, L)→ (T ′, L′) be a morphism of Lawvere theories. Then G strictly respects
the binary coproduct structures of Lemma 5.2.

Proof: It follows by unfolding definitions and rewriting the equalities L(L−1(X)) = X and
L−1(L(n)) = n.

Lemma 5.7 Let G : (T, L)→ (T ′, L′) be a morphism of Lawvere theories. Then G strictly respects
the standard ordered finite coproduct structures on T and T ′.

Proof: It follows directly from Lemmas 3.10 and 5.6 and the equality G(L(0)) = (L◦G)(0) = L′(0).

6 Lawvere theories and Jf-relative monads

Let us start by reminding that for any set U there is a category Sets(U) of the following form. The
set of objects of Sets(U) is U . The set of morphisms is

Mor(Sets(U)) = ∪X,Y ∈UFun(X,Y )
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Since a function from X to Y is defined as a triple (X,Y,G) where G is the graph subset of this
function the domain and codomain functions are well defined on Mor(Sets(U)) such that

MorSets(U)(X,Y ) = Fun(X,Y )

and a composition function can be defined that restricts to the composition of functions function
on each MorSets(U)(X,Y ). Finally the identity function U → Mor(Sets(U)) is obvious and the
collection of data that one obtains satisfies the axioms of a category. This category is called the
category of sets in U and denoted Sets(U).

We will only consider the case when U is a universe.

Following [1] we let JfU : F → Sets(U) denote the functor that takes n to stn(n) and that is
the identity on morphisms between two objects (on the total sets of morphisms the morphism
component of this functor is the inclusion of a subset). Recall that we use the expression “a
J-relative monad” as a synonym for the expression “a relative monad on J”.

By simply unfolding definitions we get the following explicit form for the definition of a JfU -relative
monad.

Lemma 6.1 A JfU -relative monad is a collection of data of the form:

1. for each n ∈ N a set RR(n) in U ,

2. for each n ∈ N a function stn(n)→ RR(n),

3. for each m,n ∈ N and f : stn(m)→ RR(n), a function ρ(f) : RR(m)→ RR(n),

such that the following conditions hold:

1. for all n ∈ N, ρ(η(n)) = IdRR(n),

2. for all f : stn(m)→ RR(n), η(m) ◦ ρ(f) = f ,

3. for all f : stn(k)→ RR(m), g : stn(m)→ RR(n), ρ(f) ◦ ρ(g) = ρ(f ◦ ρ(g)).

The main goal of this section is to provide a construction for the following problem.

Problem 6.2 For a universe U to construct an equivalence between the category LW (U) of Lawvere
theories in U and the category RMon(JfU ) of JfU -relative monads.

The construction will be given in Construction 6.16 below.

Lemma 6.3 Let RR be a relative monad on Jf : F → Sets(U). Then (K(RR), LRR) is a
Lawvere theory.

Proof: We need to prove that the pair (K(RR), LRR) satisfies conditions of Definition 5.1. The
first condition is obvious. The second condition is also obvious since Fun(stn(0), RR(n)) is a one
point set for any set RR(n). The third condition is straightforward to prove as well since the square

Fun(stn(m+ n), RR(k))
iim,n
1 ◦
−−−−→ Fun(stn(n), RR(k))

iim,n
0 ◦

y y
Fun(stn(m), RR(k)) −−−→ Fun(stn(0), RR(k))
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is a pull-back square for any set RR(k).

Problem 6.4 To construct a functor RMLU : RMon(JfU )(U)→ LW (U).

Construction 6.5 We define the object component of RML setting

RMLOb(RR) = (K(RR), LRR)

It is well defined by Lemma 6.3.

We define the morphism component of RLM setting RMLMor(φ) = K(φ). It is well defined by
the condition of Problem 2.13.

The identity and composition axioms of a functor follow from Lemma 2.15.

Below we consider, for a Lawvere theory (T, L), the category T with the finite ordered coproducts
structure obtained by applying Lemma 5.2 and Construction 3.4.

Problem 6.6 Let U be a universe and (T, L) a Lawvere theory in U . To construct a JfU -relative
monad RR = (RR, η, ρ).

Construction 6.7 We set:

1. RR(n) = MorT (L(1), L(n)),

2. η(n) is the function stn(n)→MorT (L(1), L(n)) given by

η(n)(i) = ii
(L(1),...,L(1))
i .

This function is well defined because

qn−1i=0 L(1) = L(n)

by Lemma 5.4,

3. for f ∈ Fun(stn(m),MorT (L(1), L(n))) we define

ρ(f) ∈ Fun(MorT (L(1), L(m)),MorT (L(1), L(n)))

as g 7→ g ◦ Σm−1
i=0 f(i). This formula is again well-defined in view of Lemma 5.4.

Let us verify the conditions of Lemma 6.1.

For the first condition we have

ρ(η(n))(g) = g ◦ Σn−1
i=0 η(n)(i) = g ◦ Σn−1

i=0 ii
(L(1),...,L(1))
i = g ◦ IdL(n) = g

where the third equality is by Lemma 3.7.

For the second condition let f ∈ Fun(stn(m),MorT (L(1), L(n))). To verify that η(m) ◦ ρ(f) = f
we need to verify that these two functions from stn(m) are equal, i.e., that for each i = 0, . . . ,m−1
we have

(η(m) ◦ ρ(f))(i) = f(i)
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We have

(η(m) ◦ ρ(f))(i) = ρ(f)(η(m)(i)) = ρ(f)(ii
(L(1),...,L(1))
i ) = ii

(L(1),...,L(1))
i ◦ Σm−1

j=0 f(j) = f(i)

To prove the third condition we need to show that

ρ(f) ◦ ρ(g) = ρ(f ◦ ρ(g))

for all f ∈ Fun(stn(k),MorT (L(1), L(m))) and g ∈ Fun(stn(m),MorT (L(1), L(n))).

Both sides are functions from MorT (L(1), L(k)). To verify that they are equal we need to show
that for any h ∈MorT (L(1), L(k)) we have

(ρ(f) ◦ ρ(g))(h) = ρ(f ◦ ρ(g))(h)

We have

(ρ(f) ◦ ρ(g))(h) = ρ(g)(ρ(f)(h)) = ρ(g)(h ◦ Σk−1
i=0 f(i)) = h ◦ (Σk−1

i=0 f(i)) ◦ (Σm−1
j=0 g(j))

and

ρ(f ◦ ρ(g))(h) = h ◦ (Σk−1
i=0 (f ◦ ρ(g))(i)) = h ◦ (Σk−1

i=0 (ρ(g)(f(i)))) = h ◦ (Σk−1
i=0 (f(i) ◦ Σm−1

j=0 g(j)))

The right hand sides of these two expressions are equal by Lemma 3.6. This completes the con-
struction.

We let LRM(T, L) denote the JfU -relative monad defined in Construction 6.7.

Problem 6.8 Let G : (T, L) → (T ′, L′) be a morphism of Lawvere theories. To construct a mor-
phism of relative monads LRM(T, L)→ LRM(T ′, L′).

Construction 6.9 We need to construct a family of functions

φ(n) : MorT (L(1), L(n))→MorT ′(L
′(1), L′(n))

that satisfies the conditions of Definition 2.2 for J = Jf and relative monads LRM(T, L) =
(RR, η, ρ) and LRM(T ′, L′) = (RR′, η′, ρ′). Set

φ(n) = GL(1),L(n)

since L′ = L ◦G these functions have the correct domain and codomain.

For the first condition of Definition 2.2 we need to show that for any n ∈ N one has

η′(n) = η(n) ◦GL(1),L(n)

Since both sides are functions from stn(n) it is sufficient to show that for all i = 0, . . . , n − 1 one
has η′(n)(i) = (η(n) ◦GL(1),L(n))(i). By construction

(η(n) ◦GL(1),L(n))(i) = G(η(n)(I)) = G(iiXi )

and
η′(n)(i) = iiX

′
i
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where X = (L(1), . . . , L(1)) and X ′ = (L′(1), . . . , L′(1)). Therefore we need to show that G(iiXi ) =
iiX

′
i . This follows from Lemma 5.7.

For the second condition of Definition 2.2 let f : stn(m) → MorT (L(1), L(n)). We need to show
that

ρ(f) ◦ φ(n) = φ(m) ◦ ρ(f ◦ φ(n))

Both sides are functions from MorT (L(1), L(m)) to MorT ′(L
′(1), L′(n)). To show that they are

equal we have to show that for each g ∈MorT (L(1), L(m)) one has

(ρ(f) ◦ φ(n))(g) = (φ(m) ◦ ρ′(f ◦ φ(n)))(g)

For the left hand side of this equality we have:

(ρ(f)◦φ(n))(g) = φ(n)(ρ(f)(g)) = φ(n)(g ◦Σm−1
i=0 f(i)) = G(g ◦Σm−1

i=0 f(i)) = G(g)◦G(Σm−1
i=0 f(i)) =

G(g) ◦ Σm−1
i=0 G(f(i))

where the last equality follows from Lemma 3.12.

For the right hand side we have:

(φ(m) ◦ ρ′(f ◦φ(n)))(g) = ρ′(f ◦φ(n))(φ(m)(g)) = ρ′(f ◦φ(n))(G(g)) = G(g) ◦Σm−1
i=0 (f ◦φ(n))(i) =

G(g) ◦ Σm−1
i=0 (φ(n)(f(i))) = G(g) ◦ Σm−1

i=0 G(f(i))

This completes the proof of the second condition of Definition 2.2 and the construction.

We let LRM(φ) or LRMMor(φ) denote the morphism of relative monads defined by Construction
6.9

Problem 6.10 For a universe U , to construct a functor

LRMU : LW (U)→ RMon(JfU )

Construction 6.11 We define the object component of LRM as the function defined by Con-
struction 6.7 and the morphism component as the function defined by Construction 6.9.

We need to verify that these two functions satisfy the identity and composition axioms of a functor.

Both follow immediately from the definitions of the identity functor and composition of functors.

Problem 6.12 For any universe U to construct an isomorphism of functors

RMLU ◦ LRMU → IdRMon(JfU ).

Construction 6.13 Let RR = (RR, η, ρ) be a JfU -relative monad. Let

(T, L) = RMLU (RR, η, ρ)

and
(RR′, η′, ρ′) = LRMU (T, L).
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We need to construct an isomorphism of relative monads

φRR : (RR′, η′, ρ′)→ (RR, η, ρ)

and show that the family φRR satisfies the naturality axiom of the definition of functor morphism.

We have

RR′(n) = MorT (L(1), L(n)) = MorK(RR)(LRR(1), LRR(n)) = MorK(RR)(1, n) =

Fun(stn(1), RR(n))

and we define φRR(n) : RR′(n)→ RR(n) as the obvious bijection given by setting

φRR(n)(f) = f(0)

Let us show that these functions form a morphism of relative monads, i.e., that they satisfy two
conditions of Definition 2.2. We should exchange places between the η and η′ since we consider a
morphism RR′ → RR. The first condition becomes

η(n)(i) = (η′(n) ◦ φRR(n))(i)

for any n ∈ N and i = 0, . . . , n− 1 and the second

(ρ′(f) ◦ φRR(n))(g) = (φRR(m) ◦ ρ(f ◦ φRR(n)))(g)

for any f ∈ Fun(stn(m), RR′(n)) and g ∈ RR′(m).

For n ∈ N and i = 0, . . . , n− 1 we have

(η′(n) ◦ φRR(n))(i) = φRR(n)(η′(n)(i)) = φRR(ii
(L(1),...,L(1))
i ) = ii

(L(1),...,L(1))
i (0) =

L(ii
(1,...,1)
i )(0) = LRR(ii

(1,...,1)
i )(0) = (ii

(1,...,1)
i ◦ η(n))(0) = η(n)(ii

(1,...,1)
i (0)) = η(n)(i)

where the fourth equality is by Lemma 5.4 and the eighth equality is by Lemma 4.5.

For the second condition, f ∈ Fun(stn(m), RR′(n)) and g ∈ RR′(m) we have

(ρ′(f) ◦ φRR(n))(g) = φRR(n)(ρ′(f)(g)) = φRR(n)(g ◦T Σm−1
i=0 f(i)) = (g ◦T Σm−1

i=0 f(i))(0)

where f is considered as an element of Fun(stn(m),MorT (L(1), L(n))) and g as an element of
MorT (L(1), L(m)). Next we have:

(g ◦T Σm−1
T,i=0f(i))(0) = (g ◦K(RR) Σm−1

T,i=0f(i))(0) = (g ◦ ρ(Σm−1
T,i=0f(i)))(0) = ρ(Σm−1

T,i=0f(i))(g(0))

where on the right g is considered as an element of Fun(stn(1), RR(m)).

On the other hand we have:

(φRR(m) ◦ ρ(f ◦ φRR(n)))(g) = ρ(f ◦ φRR(n))(φRR(m)(g)) = ρ(f ◦ φRR(n))(g(0))

where on the right g is considered as an element of Fun(stn(1), RR(m)).

Let us show that
Σm−1
T,i=0f(i) = f ◦ φRR(n),
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Since both sides are morphisms in T from L(m) to L(n) and it is sufficient to show that for any
j = 0, . . . ,m one has

ii
(L(1),...,L(1))
j ◦T (Σm−1

T,i=0f(i)) = ii
(L(1),...,L(1))
j ◦T (f ◦ φRR(n))

The left hand side equals f(j). For the right hand side we have

ii
(L(1),...,L(1))
j ◦T (f ◦ φRR(n)) = L(ii

(1,...,1)
j ) ◦T (f ◦ φRR(n)) = L(ii

(1,...,1)
j ) ◦K(RR) (f ◦ φRR(n)) =

ii
(1,...,1)
j ◦ f ◦ φRR(n)

where the first equality is by Lemma 5.4 and the third equality is by Lemma 2.12. Both f(j)

and ii
(1,...,1)
j ◦ f ◦ φRR(n) are elements of Fun(stn(1), RR(n)). To prove that they are equal it is

sufficient to prove that they coincide on 0. We have:

(ii
(1,...,1)
j ◦ f ◦ φRR(n))(0) = (f ◦ φRR(n))(i) = φRR(n)(f(i)) = f(i)(0)

where the first equality is by Lemma 4.5(2).

This completes the proof of the fact that the family of functions φRR is a morphism of relative
monads.

Let us show that the family φRR satisfies the naturality axiom of the definition of functor morphism.
Let u : RR1 → RR2 be a morphism of relative monads. Let (Ti, Li) = RML(RRi) and RR′i =
LRM(Ti, Li), i = 1, 2. Let G = RML(u) and u′ = LRM(G). We need to show that the square

RR′1
u′−−−→ RR′2

φRR1

y yφRR2

RR1
u−−−→ RR2

commutes, i.e., that for any n ∈ N one has

u′(n) ◦ φRR2(n) = φRR1(n) ◦ u(n) (5)

We have that

u′(n) ∈ Fun(RR′1(n), RR′2(n)) = Fun(Fun(stn(1), RR1(n)), Fun(stn(1), RR2(n)))

and
u′(n)(f) = (LRM(G)(n))(f) = GL1(1),L1(n)(f) = G1,n(f) = f ◦ u(n)

Both sides of (5) are functions from Fun(stn(1), RR1(n)). Therefore to prove that they are equal
we need to prove that their values on any f ∈ Fun(stn(1), RR1(n)) are equal. We have:

(u′(n) ◦ φRR2(n))(f) = φRR2(n)(u′(n)(f)) = (u′(n)(f))(0) = (f ◦ u(n))(0) = u(n)(f(0))

and
(φRR1(n) ◦ u(n))(f) = u(n)(φRR1(n)(f)) = u(n)(f(0)).

This completes the proof of the fact that the family φRR is a morphism of functors RMLU ◦
LRMU → IdRMon(JfU ). That it is an isomorphism follows from the general properties of functor
morphisms and Lemma 2.7. This completes Construction 6.12.
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Problem 6.14 For a universe U to construct a functor isomorphism

LRMU ◦RMLU → IdLW (U)

Construction 6.15 Let (T, L) be a Lawvere theory in U . Let

(RR, η, ρ) = LRM(T, L)

and
(T ′, L′) = RML(RR, η, ρ)

We need to construct an isomorphism of Lawvere theories

G(T,L) : (T ′, L′)→ (T, L)

and show that the family G(T,L) is natural with respect to the morphisms of Lawvere theories
(T1, L1)→ (T2, L2). While constructing G(T,L) we will abbreviate its notation to G.

We have:
Ob(T ′) = Ob(K(RR)) = Ob(F ) = N

MorT ′(m,n) = MorK(RR)(m,n) = Fun(stn(m), RR(n)) = Fun(stn(m),MorT (L(1), L(n)))

We set the object component of G to be the object component of L.

We set the morphism component

Gm,n : MorT ′(m,n) = Fun(stn(m),MorT (L(1), L(n)))→MorT (L(m), L(n)) = MorT (m,n)

to be of the form:
Gm,n(f) = Σm−1

T,i=0f(i)

To show that Gm,n is a bijection consider the function in the opposite direction given by, for
u ∈MorT (m,n) and i = 0, . . . ,m− 1

G∗m,n(u)(i) = ii
(L(1),...,L(1))
i ◦ u

The fact that G and G∗ are mutually inverse follows easily from the definition of finite ordered
coproducts.

Let us show that G is a functor. For the composition axiom, let f ∈MorT ′(k,m), g ∈MorT ′(m,n),
then

Gk,m(f) ◦T Gm,n(g) = (Σk−1
T,i=0f(i)) ◦T (Σm−1

T,j=0g(j)) = Σk−1
T,i=0(f(i) ◦T (Σm−1

T,j=0g(j)))

and

Gk,n(f ◦T ′ g) = Σk−1
T,i=0((f ◦ ρ(g))(i)) = Σk−1

T,i=0(ρ(g)(f(i))) = ΣT,i=0(f(i) ◦T (Σm−1
j=0 g(j)))

where the last equality is by Construction 6.7(3).

For the identity axiom, let n ∈ N then

Gn,n(IdT ′,m) = Gn,n(η(m)) = Σm−1
T,i=0(η(m)(i)) = Σm−1

T,i=0(ii
(L(1),...,L(1))
i ) = IdT,L(m)
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where the first equality is by Construction 2.9, the third one is by Construction 6.7(2) and the
third one is by Lemma 3.7.

To prove that G is a morphism of Lawvere theories we have to show that L′ ◦G = L. On objects
the equality is obvious. To show that it holds on morphisms let u ∈ Fun(stn(m), stn(n)). Then

(L′ ◦G)(u) = G(L′(u)) = Σm
T,i=0L

′(u)(i) = Σm
T,i=0LRR(u)(i) = Σm

T,i=0(u ◦ η(n))(i) =

Σm
T,i=0η(n)(u(i)) = Σm

T,i=0ii
(L(1),...,L(1))
u(i) = L(u)

where the fourth equality is by Construction 2.11 and the sixth one is by Construction 6.7(2) and
the seventh one is by Lemma 5.5.

This completes the construction of the Lawvere theory morphisms G(T,L).

It remains to show that they are natural with respect to morphisms of Lawvere theories. Let
H : T1 → T2 be such a morphism. Let (RRi, ηi, ρi) = LRM(Ti, Li) for i = 1, 2, (T ′i , L

′
i) =

RML(RRi, ηi, ρi), φ = LRM(H) and H ′ = RML(φ).

Since (L′i)Ob = IdN and L′1 ◦H ′ = L′2 we have that (H ′)Ob = IdN.

For m,n ∈ N and

f ∈MorT ′1(m,n) = Fun(stn(m),MorT1(L1(1), L1(n)))

we have

H ′(f) = RML(φ)(f) = K(φ)(f) = f ◦ φ(n) = f ◦ LRM(H)(n) = f ◦HL1(1),L1(n)

where the third equality is by Construction 2.14 and the fifth equality is by Construction 6.9.

We need to show that the square

T ′1
H′−−−→ T ′2

G(T1,L1)

y yG(T2,L2)

T1
H−−−→ T2

commutes.

For the object components, since (G(Ti,Li))Ob = (Li)Ob it means that for all n ∈ N one has

L2(H
′(n)) = H(L1(n)),

i.e., that L2(n) = H(L1(n)) which follows from the fact that H is a morphism of Lawvere theories.

For the morphism component it means that for all f ∈ Fun(stn(m),MorT1(L1(1), L1(n))) one has

G(T2,L2)(H ′(f)) = H(G(T1,L1)(f)),

For the left hand side we have:

G(T2,L2)(H ′(f)) = G(T2,L2)(f ◦HL1(1),L1(n)) = Σm−1
T2,i=0(f ◦HL1(1),L1(n))(i) = Σm−1

T2,i=0(H(f(i)))

For the right hand side we have:

H(G(T1,L1)(f)) = H(Σm−1
T1,i=0f(i)) = Σm−1

T2,i=0(H(f(i)))

where the second equality is by Lemmas 5.7 and 3.12.

This completes the proof that the constructed family of Lawvere theories morphisms G(T,L) is a
morphism of functors and with it completes Construction 6.15.

20



We can now provide a construction for Problem 6.2.

Construction 6.16 A functor RMLU from RMon(JfU ) to LW (U) is provided by Construction
6.5. A functor LMRU from LW (U) to RMon(JfU ) is provided by Construction 6.11. A func-
tor isomorphism RMLU ◦ LRMU → IdRMon(JfU ) is provided by Construction 6.13. A functor
isomorphism LRMU ◦RMLU → IdLW (U) is provided by Construction 6.15.

Remark 6.17 The composition RMLU ◦LRMU is just slightly off from being equal to the identity
functor on RMon(JfU ). It might appear that one can achieve the equality by considering a modified
version LRM ′ of the functor LRM that sends (T, L) to the relative monad based on the family of
sets MorT (L(1), L(n))m where for a set X and m ∈ N one defines Xm inductively as X0 = stn(1),
X1 = X and Xn+1 = Xn ×X. However, even this modified version of LRM fails to achieve the
equality due to the coercions that we need to insert to make our expression completely transparent.
Indeed, the set of morphisms of the category T in (T, L) = LRM ′(RR) is qm,n∈NRR(n)m and the
set RR′(n) in RR′ = RML(T, L) is MorT (1, n), i.e., the set of iterated pairs of the form ((1, n), x)
where x ∈ RR(n).
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