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Abstract

We construct for any finitary monad M on sets a C-system (“contextual category”) CC(M)
and describe, using the results of [5] a class of sub-quotients of CC(M) in terms of objects
directly constructed from M . In the special case of the monads of expressions associated with
dependent signatures these constructions lead to the C-systems of dependent type systems.

1 Introduction

After reminding the definition of a finitary monad on Sets we construct for any such monad M a
C-system (“contextual category”) CC(M) whose underlying category is equivalent to the opposite
category to the category of finite free M -algebras.

We describe, using the results of [5], all the C-subsystems of CC(M) in terms of objects directly
associated with M .

We then define two additional operations σ and σ̃ on CC(M) and described in terms of M the
regular congruence relations (see [5]) on C-subsystems of CC(M) which are compatible in a certain
sense with σ and σ̃.

In the case when M is the finitary monad of expressions under a dependent signature which is
described in [4] the results of this paper immediately imply a rigorous construction of a C-system
for any system of contexts, typing judgements and definitional equality judgements based on a
dependent signature and satisfying the conditions of Remark 4.2 and Propositions 6.2.

This is one of short papers based on the material of [3]. I would like to thank the Institute Henri
Poincare in Paris and the organizers of the “Proofs” trimester for their hospitality during the
preparation of this paper. The work on this paper was facilitated by discussions with Richard
Garner and Egbert Rijke.

2 Finitary monads on sets

A finitary monad (on sets) is a monad M : Sets → Sets that, as a functor, commutes with filtering
colimits. Since any set is, canonically, the colimit of the filtering diagram of its finite subsets,
a functor Sets → Sets that commutes with filtering colimits can be equivalently described as a
functor FSets → Sets where FSets is the category of finite sets.

The monad structure consists of two families of maps:

1. for any X ∈ Sets, a function X → M(X),

2. for any X ∈ Sets, a function M(M(X)) → M(X)
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which satisfy certain conditions. Given a monad structure on a functor M which commutes with
filtering colimits, finite sets X, X ′ and a function X ′ → M(X), the composition M(X ′) →
M(M(X)) → M(X) is a function M(X ′) → M(X). This allows one to describe finitary mon-
ads directly in terms of functors FSets → Sets as follows:

Lemma 2.1 The construction outline above defines an equivalence between (the type of) finitary
monads on Sets and (the type of) collections of data of the form:

1. for every finite set X a set M(X),

2. for every finite set X a function ιX : X → M(X),

3. for every finite sets X, X ′ and a function f : X → M(X ′), a function µ(f) : M(X) → M(X ′)

which satisfy the following conditions:

1. for a finite set X, µ(ιX) = idM(X),

2. for a function of finite sets f : X → X ′, ιXµ(f) = f ,

3. for two functions f : X → M(X ′), g : X ′ → M(X ′′), µ(fµ(g)) = µ(f)µ(g).

Proof: Straightforward. Cf. [2].

The description of finitary monads given by Lemma 2.1 is much more convenient than the direct
definition for formalization.

For T ∈ M({x1, . . . , xn}) and f : X → M(X ′) such that f(xi) = fi we write µ(f)(T ) as
T (f1/x1, . . . , fn/xn).

For a finitary monad M we let M − cor (“M-correspondences”) to be the full subcategory of the
Kleisli category of M whose objects are finite sets. Recall, that the set of morphisms from X to
Y in M − cor is the set of maps from X to M(Y ) i.e. M(Y )X (in other words, M − cor is the
category of free, finitely generated M -algebras).

We further let C(M) denote the pre-category4 with

Ob(C(M)) = N

Mor(C(M)) =
⨿

m,n∈N
M({1, . . . ,m})n

which is equivalent, as a category, to (M − cor)op.

For E ∈ M({1, . . . ,m}) and n ≥ 1 we set:

tn(E) = E[n+ 1/n, n+ 2/n+ 1, . . . ,m+ 1/m]

sn(E) = E[n/n+ 1, n+ 1/n+ 2, . . . ,m− 1/m]

If we were numbering elements of sets with n-elements from 0 then we would have tn = M(∂n−1)
and tn = M(σn−1) where ∂i and σi are the usual generators of the simplicial category.

4See the introduction to [5].
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Remark 2.2 The correspondence M 7→ C(M) defines an equivalence between the type of the
finitary monads on Sets and the type of the pre-category structures on N which extend the a
pre-category structure of finite sets and where the addition remains to be the coproduct.

Remark 2.3 A finitary sub-monad ofM is the same as a sub-pre-category in C(M) which contains
all objects. Intersection of two sub-monads is a sub-monad which allows one to speak of sub-monads
generated by a set of elements.

3 C-system defined by a monad.

Let CC(M) be the pre-category whose set of objects is Ob(CC(M)) = ⨿n≥0Obn where

Obn = M(∅)× . . .×M({1, . . . , n− 1})

and the set of morphisms is

Mor(CC(M)) =
⨿

m,n≥0

Obm ×Obn ×M({1, . . . ,m})n

with the obvious domain and codomain maps. The composition of morphisms is defined in the
same way as in C(M) such that the mapping Ob(CC(M)) → N which sends all elements of Obn
to n, is a functor from CC(M) to C(M). The associativity of compositions follows immediately
from the associativity of compositions in M − cor.

Note that if M(∅) = ∅ then CC(M) = ∅ and otherwise the functor CC(M) → C(M) is an
equivalence, so that in the second case C(M) and CC(M) are indistinguishable as categories.
However, as pre-categories they are quite different.

The pre-category CC(M) is given the structure of a C-system as follows. The final object is the
only element of Ob0, the map ft is defined by the rule

ft(T1, . . . , Tn) = (T1, . . . , Tn−1).

The canonical pull-back square defined by an object (T1, . . . , Tn+1) and a morphism

(f1, . . . , fn) : (R1, . . . , Rm) → (T1, . . . , Tn)

is of the form:

(R1, . . . , Rm, Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,m+1)−−−−−−−−−→ (T1, . . . , Tn+1)

(1,...,m)

y y(1,...,n)

(R1, . . . , Rm)
(f1,...,fn)−−−−−−→ (T1, . . . , Tn)

(1)

Proposition 3.1 With the structure defined above CC(M) is a C-system.

Proof: Straightforward.

Any morphism of monads M → M ′ defines a C-system morphism CC(M) → CC(M ′).
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Remark 3.2 There is another construction of a pre-category from a finitary monad M which takes
as an additional parameter a set V ar which is called the set of variables. Let Fn(V ar) be the set of
sequences of length n of pair-wise distinct elements of V ar. Define the pre-category CC(M,V ar)
as follows. The set of objects of CC(M,V ar) is

Ob(CC(M,V ar)) = ⨿n≥0 ⨿(x1,...,xn)∈Fn(V ar) M(∅)× . . .×M({x1, . . . , xn−1})

For compatibility with the traditional type theory we will write the elements of Ob(CC(M,X)) as
sequences of the form x1 : E1, . . . , xn : En. The set of morphisms is given by

HomCC(M,,V ar)((x1 : E1, . . . , xm : Em), (y1 : T1, . . . , yn : Tn)) = M({x1, . . . , xm})n

The composition is defined in such a way that the projection

(x1 : E1, . . . , xn : En) 7→ (E1, E2(1/x1), . . . , En(1/x1, . . . , n− 1/xn−1))

is a functor from CC(M,V ar) to CC(M).

This functor is clearly an equivalence of categories but not an isomorphism of pre-categories.

There is an obvious final object and ft map on CC(M,V ar).

There is however a real problem in making it into a C-system which is due to the following. Consider
an object (y1 : T1, . . . , yn+1 : Tn+1) and a morphism (f1, . . . , fn) : (x1 : R1, . . . , xm : Rm) → (y1 :
T1, . . . , yn : Tn). In order for the functor to CC(M) to be a C-system morphism the canonical
square build on this pair should have the form

(x1 : R1, . . . , xm : Rm, xm+1 : Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,xn+1)−−−−−−−−−→ (y1 : T1, . . . , yn+1 : Tn+1)y y

(x1 : R1, . . . , xm : Rm)
(f1,...,fn)−−−−−−→ (y1 : T1, . . . , yn : Tn)

where xm+1 is an element of V ar which is distinct from each of the elements x1, . . . , xm. Moreover,
we should choose xm+1 in such a way the the resulting construction satisfies the C-system axioms
for (f1, . . . , fn) = Id and for the compositions (g1, . . . , gm) ◦ (f1, . . . , fn). One can easily see that
no such choice is possible for a finite set V ar. At the moment it is not clear to me whether or not
it is possible for an infinite V ar.

Remark 3.3 The pre-category C(M) also extends to a C-system which is defined as follows. The
final object is 0. The map ft is given by

ft(n) =

{
0 if n = 0
n− 1 if n > 0

The canonical projection n → n− 1 is given by the sequence (1, . . . , n− 1). For f = (f1, . . . , fm) :
n → m the canonical square build on f and the canonical projection m+ 1 → m is of the form

n+ 1
(f1,...,fm,n+1)−−−−−−−−−→ m+ 1y y

n
(f1,...,fm)−−−−−−→ m
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Any morphism of monads M → M ′ defines a C-system morphism C(M) → C(M ′). Non-trivial
C-subsystems of C(M) are in one-to-one correspondence with finitary sub-monads of M .

The natural projection CC(M) → C(M) is a C-system homomorphism. It’s C-system sections
are in one-to-one correspondence with M(∅) such that U ∈ M(∅) corresponds to the section which
takes the object n of C(M) to the object (U, . . . , U) of CC(M)

Recall from [5] that for a C-system CC one defines Õb(CC) as the subset of Mot(CC) which
consists of morphisms s of the form ft(X) → X such that l(X) > 0 and s ◦ pX = Idft(X).

Lemma 3.4 One has:

Õb(CC(M)) ∼=
⨿
n≥0

M(∅)× . . .×M({1, . . . , n− 1})×M({1, . . . , n})2

Proof: An element of Õb(CC(M)) is a section s of the canonical morphism pΓ : Γ → ft(Γ).
It follows immediately from the definition of CC(M) that for Γ = (E1, . . . , En+1), a morphism
(f1, . . . , fn+1) ∈ M({1, . . . , n})n+1 from ft(Γ) to Γ is a section of pΓ if an only if fi = i for
i = 1, . . . , n. Therefore, any such section is determined by its last component fn+1 and mapping
((E1, . . . , En), (E1, . . . , En+1), (f1, . . . , fn+1)) to (E1, . . . , En, En+1, fn+1) we get a bijection

Õb(CC(M)) ∼=
⨿
n≥0

M(∅)× . . .×M({1, . . . , n− 1})×M({1, . . . , n})2 (2)

Using the notations of type theory we can write elements of Ob(CC(M)) as

Γ = (T1, . . . , Tn▷)

where Ti ∈ M({1, . . . , i− 1}) and the elements of Õb(CC(M)) as

J = (T1, . . . , Tn ⊢ t : T )

where Ti ∈ M({1, . . . , i− 1}) and t, T ∈ M({1, . . . , n}).

In this notation the operations T, T̃ , S, S̃ and δ which were introduced in [5] take the form:

1. T ((Γ, Tn+1▷), (Γ,∆▷)) = (Γ, Tn+1, tn+1(∆)▷) when l(Γ) = n,

2. T̃ ((Γ, Tn+1▷), (Γ,∆ ⊢ r : R)) = (Γ, Tn+1, tn+1(∆) ⊢ tn+1(r : R)) when l(Γ) = n,

3. S((Γ ⊢ s : S), (Γ, S,∆▷)) = (Γ, sn+1(∆[s/n+ 1])▷) when l(Γ) = n,

4. S̃((Γ ⊢ s : S), (Γ, S,∆ ⊢ r : R)) = (Γ, sn+1(∆[s/n+1]) ⊢ sn+1((r : R)[s/n+1]) when l(Γ) = n,

5. δ(Γ, T▷) = (Γ, T ⊢ (n+ 1) : T ) when l(Γ) = n.
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4 C-subsystems of CC(M).

Let CC be a C-subsystem of CC(M). By [5] CC is determined by the subsets C = Ob(CC) and

C̃ = Õb(CC) in Ob(CC(M)) and Õb(CC(M)).

For Γ = (E1, . . . , En) we write (Γ▷C) if (E1, . . . , En) is in C and (Γ ⊢
C̃
t : T ) if (E1, . . . , En, T, t)

is in C̃.

The following result is an immediate corollary of [5, Proposition 4.3] together with the description
of the operations T, T̃ , S, S̃ and δ for CC(M) which is given above.

Proposition 4.1 Let M be a finitary monad on Sets. A pair of subsets

C ⊂
⨿
n≥0

n−1∏
i=0

M({1, . . . , i})

C̃ ⊂
⨿
n≥0

(
n−1∏
i=0

M({1, . . . , i}))×M({1, . . . , n})2

corresponds to a C-subsystem CC of CC(M) if and only if the following conditions hold:

1. (▷C)

2. (Γ, T▷C) ⇒ (Γ▷C)

3. (Γ ⊢
C̃
r : R) ⇒ (Γ, R▷C)

4. (Γ, T▷C) ∧ (Γ,∆,⊢
C̃
r : R) ⇒ (Γ, T, tn+1(∆) ⊢

C̃
tn+1(r : R)) where n = l(Γ1)

5. (Γ ⊢
C̃

s : S) ∧ (Γ, S,∆ ⊢
C̃

r : R) ⇒ (Γ, sn+1(∆[s/n + 1]) ⊢
C̃

sn+1((r : R)[s/n + 1])) where
n = l(Γ1),

6. (Γ, T▷C) ⇒ (Γ, T ⊢
C̃
n+ 1 : T ) where n = l(Γ).

Note that conditions (4) and (5) together with condition (6) and condition (3) imply the following

4a (Γ, T▷C) ∧ (Γ,∆▷C) ⇒ (Γ, T, tn+1(∆)▷C) where n = l(Γ1),

5a (Γ ⊢
C̃
s : S) ∧ (Γ, S,∆▷C) ⇒ (Γ, sn+1(∆[s/n+ 1])▷C) where n = l(Γ1).

Note also that modulo condition (2), condition (1) is equivalent to the condition that B ̸= ∅.

Remark 4.2 If one re-writes the conditions of Proposition 4.1 in the more familiar in type theory
form where the variables introduced in the context are named rather than directly numbered one
arrives at the following rules:

▷C

x1 : T1, . . . , xn : Tn▷C

x1 : T1, . . . , xn−1 : Tn−1▷C

x1 : T1, . . . , xn : Tn ⊢
C̃
t : T

x1 : T1, . . . , xn : Tn, y : T▷C
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x1 : T1, . . . , xn : Tn, y : T ▷C x1 : T1, . . . , xn : Tn, . . . , xm : Tm ⊢
C̃
r : R

x1 : T1, . . . , xn : Tn, y : T, xn+1 : Tn+1, . . . , xm : Tm ⊢
C̃
r : R

x1 : T1, . . . , xn : Tn ⊢
C̃
s : S x1 : T1, . . . , xn : Tn, y : S, xn+1 : Tn+1, . . . , xm : Tm ⊢

C̃
r : R

x1 : T1, . . . , xn : Tn, xn+1 : Tn+1[s/y], . . . , xm : Tm[s/y] ⊢
C̃
(r : R)[s/y]

x1 : E1, . . . , xn : En▷C

x1 : E1, . . . , xn : En ⊢
C̃
xn : En

which are similar (and probably equivalent) to the ”basic rules of DTT” given in [1, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
sufficient for a given collection of contexts and judgements to define a C-system.

Lemma 4.3 Let CC be as above and let (E1, . . . , Em), (T1, . . . , Tn) ∈ Ob(CC) and (f1, . . . , fn) ∈
M({1, . . . ,m})n. Then

(f1, . . . , fn) ∈ HomCC((E1, . . . , Em), (T1, . . . , Tn))

if and only if (f1, . . . , fn−1) ∈ HomCC((E1, . . . , Em), (T1, . . . , Tn−1)) and

E1, . . . , Em ⊢
C̃
fn : Tn(f1/1, . . . , fn−1/n− 1)

Proof: Straightforward using the fact that the canonical pull-back squares in CC(M) are given by
(1).

Example 4.4 The category CC(M) for the identity monad is empty. For the monad of the form
M(X) = pt the C-system CC(M) has only two subsystems - itself and the trivial one for which
C = pt.

The first non-trivial example is the monad M(X) = X ⨿ {∗}. We conjecture that in this case the
set of all subsystems of CC(M) is uncountable.

One can probably show this as follows. Let ϵ : N → {0, 1}, be a sequence of 0’s and 1’s. Con-
sider the C-subsystem of CCϵ of CC(M) which is generated by the set of elements of the form

(∗, 1, 2, . . . , n▷) ∈ Ob(CC(M)) for all n ≥ 0 and elements (∗, 1, . . . , n+1 ⊢ n+2 : ∗) ∈ Õb(CC(M))
for n such that ϵ(n) = 1.

It should be possible to show that CCϵ ̸= CCϵ′ for ϵ ̸= ϵ′ which would imply the conjecture.

5 Operations σ and σ̃ on CC(M).

C-systems of the form CC(M) have an important additional structure which will play a role in the
next section. This structure is given by two operations:
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1. for Γ = (T1, . . . , Tn, . . . , Tn+i) and Γ′ = (T ′
1, . . . , T

′
n) we set

σ(Γ,Γ′) = (T ′
1, . . . , T

′
n, Tn+1, . . . , Tn+i)

This gives us an operation with values in Ob(CC(M)) defined on the subset of Ob(CC(M))×
Ob(CC(M)) which consists of pairs (Γ,Γ′) such that l(Γ) > l(Γ′),

2. for J = (T1, . . . , Tn−1, . . . , Tn−1+i ⊢ t : Tn+i), Γ
′ = (T ′

1, . . . , T
′
n) we set

σ̃(J ,Γ′) =

{
(T ′

1, . . . , T
′
n, Tn+1, . . . , Tn+i−1 : t : Tn+i) for i > 0

(T ′
1, . . . , T

′
n−1 ⊢ t : T ′

n) for i = 0

This gives us an operation with values in Õb(CC(M)) defined on the subset of Õb(CC(M))×
Ob(CC(M)) which consists of pairs (J ,Γ′) such that l(∂(J )) ≤ l(Γ′).

6 Regular sub-quotients of CC(M).

Let M be a finitary monad and

Ceq ⊂
⨿
n≥0

(

n−1∏
i=0

M({1, . . . , i}))×M({1, . . . , n})2

C̃eq ⊂
⨿
n≥0

(

n−1∏
i=0

M({1, . . . , i}))×M({1, . . . , n})3

be two subsets.

For Γ = (T1, . . . , Tn) ∈ ob(CC(M)) and S1, S2 ∈ M({1, . . . , i}) we write (Γ ⊢Ceq S1 = S2) to signify
that (T1, . . . , Tn, S1, S2) ∈ Ceq. Similarly for S, o, o′ ∈ S({1, . . . , n}) we write (Γ ⊢

C̃eq
o = o′ : S) to

signify that (T1, . . . , Tn, S, o, o
′) ∈ C̃eq. When no confusion is possible we will omit the subscripts

Ceq and C̃eq at ⊢.

Similarly we will write ▷ instead of ▷C and ⊢ instead of ⊢
C̃
if the subsets C and C̃ are unambigu-

ously determined by the context.

Definition 6.1 Given a finitary monad M and subsets C, C̃, Ceq, C̃eq as above define relations
∼ on C and ≃ on C̃ as follows:

1. for Γ = (T1, . . . , Tn), Γ
′ = (T ′

1, . . . , T
′
n) in C we set Γ ∼ Γ′ iff ft(Γ) ∼ ft(Γ′) and

T1, . . . , Tn−1 ⊢ Tn = T ′
n,

2. for (Γ ⊢ o : S), (Γ′ ⊢ o′ : S′) in C̃ we set (Γ ⊢ o : S) ≃ (Γ′ ⊢ o′ : S′) iff (Γ, S) ∼ (Γ′, S′) and

(Γ ⊢ o = o′ : S).

Proposition 6.2 Let C, C̃, Ceq, C̃eq be as above and suppose in addition that one has:

1. C and C̃ satisfy conditions (1)-(6) of Proposition 4.1 which are referred to below as conditions
(1.1)-(1.6) of the present proposition,
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2.
(a) (Γ ⊢ T = T ′)⇒(Γ, T▷)
(b) (Γ, T▷)⇒(Γ ⊢ T = T )
(c) (Γ ⊢ T = T ′)⇒(Γ ⊢ T ′ = T )
(d) (Γ ⊢ T = T ′) ∧ (Γ ⊢ T ′ = T ′′)⇒(Γ ⊢ T = T ′′)

3.
(a) (Γ ⊢ o = o′ : T )⇒(Γ ⊢ o : T )
(b) (Γ ⊢ o : T )⇒(Γ ⊢ o = o : T )
(c) (Γ ⊢ o = o′ : T )⇒(Γ ⊢ o′ = o : T )
(d) (Γ ⊢ o = o′ : T ) ∧ (Γ ⊢ o′ = o′′ : T )⇒(Γ ⊢ o = o′′ : T )

4.
(a) (Γ1 ⊢ T = T ′) ∧ (Γ1, T,Γ2 ⊢ S = S′)⇒(Γ1, T

′,Γ2 ⊢ S = S′)
(b) (Γ1 ⊢ T = T ′) ∧ (Γ1, T,Γ2 ⊢ o = o′ : S)⇒(Γ1, T

′,Γ′
2 ⊢ o = o′ : S)

(c) (Γ ⊢ S = S′) ∧ (Γ ⊢ o = o′ : S)⇒(Γ ⊢ o = o′ : S′)

5.

(a) (Γ1, T▷) ∧ (Γ1,Γ2 ⊢ S = S′)⇒(Γ1, T, ti+1Γ2 ⊢ ti+1S = ti+1S
′) i = l(Γ)

(b) (Γ1, T▷) ∧ (Γ1,Γ2 ⊢ o = o′ : S)⇒(Γ1, T, ti+1Γ2 ⊢ ti+1o = ti+1o
′ : ti+1S) i = l(Γ)

6.

(a) (Γ1, T,Γ2 ⊢ S = S′) ∧ (Γ1 ⊢ r : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ⊢ si+1(S[r/i+ 1]) = si+1(S

′[r/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ⊢ o = o′ : S) ∧ (Γ1 ⊢ r : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ⊢ si+1(o[r/i+ 1]) = si+1(o

′[r/i+ 1]) : si+1(S[r/i+ 1])) i = l(Γ1)

7.

(a) (Γ1, T,Γ2, S▷) ∧ (Γ1 ⊢ r = r′ : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ⊢ si+1(S[r/i+ 1]) = si+1(S[r

′/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ⊢ o : S) ∧ (Γ1 ⊢ r = r′ : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ⊢ si+1(o[r/i+ 1]) = si+1(o[r

′/i+ 1]) : si+1(S[r/i+ 1])) i = l(Γ1)

Then the relations ∼ and ≃ are equivalence relations on C and C̃ which satisfy the conditions of
[5, Proposition 5.4] and therefore they correspond to a regular congruence relation on the C-system
defined by (C, C̃).

Lemma 6.3 One has:

1. If conditions (1.2), (4a) of the proposition hold then (Γ ⊢ S = S′) ∧ (Γ ∼ Γ′)⇒(Γ′ ⊢ S = S′).

2. If conditions (1.2), (1.3), (4a), (4b), (4c) hold then (Γ ⊢ o = o′ : S)∧((Γ, S) ∼ (Γ′, S′))⇒(Γ′ ⊢
o = o′ : S′).

Proof: By induction on n = l(Γ) = l(Γ′).

(1) For n = 0 the assertion is obvious. Therefore by induction we may assume that (Γ ⊢ S =
S′)∧ (Γ ∼ Γ′)⇒(Γ′ ⊢ S = S′) for all i < n and all appropriate Γ,Γ′, S and S′ and that (T1, . . . , Tn ⊢
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S = S′)∧(T1, . . . , Tn ∼ T ′
1, . . . , T

′
n) holds and we need to show that (T ′

1, . . . , T
′
n ⊢ S = S′) holds. Let

us show by induction on j that (T ′
1, . . . , T

′
j , Tj+1, . . . , Tn ⊢ S = S′) for all j = 0, . . . , n. For j = 0 it

is a part of our assumptions. By induction we may assume that (T ′
1, . . . , T

′
j , Tj+1, . . . , Tn ⊢ S = S′).

By definition of ∼ we have (T1, . . . , Tj ⊢ Tj+1 = T ′
j+1). By the inductive assumption we have

(T ′
1, . . . , T

′
j ⊢ Tj+1 = T ′

j+1). Applying (4a) with Γ1 = (T ′
1, . . . T

′
j), T = Tj+1, T ′ = T ′

j+1 and
Γ2 = (Tj+2, . . . , Tn) we conclude that (T ′

1, . . . , T
′
j+1, Tj+2, . . . , Tn ⊢ S = S′).

(2) By the first part of the lemma we have Γ′ ⊢ S = S′. Therefore by (4c) it is sufficient to show
that (Γ ⊢ o = o′ : S) ∧ (Γ ∼ Γ′)⇒(Γ′ ⊢ o = o′ : S). The proof of this fact is similar to the proof of
the first part of the lemma using (4b) instead of (4a).

Lemma 6.4 One has:

1. Assume that conditions (1.2), (2b), (2c), (2d) and (4a) hold. Then ∼ is an equivalence
relation.

2. Assume that conditions of the previous part of the lemma as well as conditions (1.3), (3b),
(3c), (3d), (4b) and (4c) hold. Then ≃ is an equivalence relation.

Proof: By induction on n = l(Γ) = l(Γ′).

(1) Reflexivity follows directly from (1.2) and (2b). For n = 0 the symmetry is obvious. Let
(Γ, T ) ∼ (Γ′, T ′). By induction we may assume that Γ′ ∼ Γ. By Lemma 6.3(a) we have (Γ′ ⊢
T = T ′) and by (2c) we have (Γ′ ⊢ T ′ = T ). We conclude that (Γ′, T ′) ∼ (Γ, T ). The proof of
transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of ∼, (1.3) and (3b). Symmetry and transitivity are
also easy using Lemma 6.3.

From this point on we assume that all conditions of Proposition 6.2 hold. Let C ′ = C/ ∼ and
C̃ ′ = C̃/ ≃. It follows immediately from our definitions that the functions ft : C → C and
∂ : C̃ → C define functions ft′ : C ′ → C ′ and ∂′ : C̃ ′ → C ′.

Lemma 6.5 The conditions (3) and (4) of [5, Proposition 5.4] hold for ∼ and ≃.

Proof: 1. We need to show that for (Γ, T▷), and Γ ∼ Γ′ there exists (Γ′, T ′▷) such that (Γ, T ) ∼
(Γ′, T ′). It is sufficient to take T = T ′. Indeed by (2b) we have Γ ⊢ T = T , by Lemma 6.3(1) we
conclude that Γ′ ⊢ T = T and by (1a) that Γ′, T▷.

2. We need to show that for (Γ ⊢ o : S) and (Γ, S) ∼ (Γ′, S′) there exists (Γ′ ⊢ o′ : S′) such that
(Γ′ ⊢ o′ : S′) ≃ (Γ ⊢ o : S). It is sufficient to take o′ = o. Indeed, by (3b) we have (Γ ⊢ o = o : S),
by Lemma 6.3(2) we conclude that (Γ′ ⊢ o = o : S′) and by (2a) that (Γ′ ⊢ o : S′).

Lemma 6.6 The equivalence relations ∼ and ≃ are compatible with the operations T, T̃ , S, S̃ and
δ.

Proof: (1) Given (Γ1, T▷) ∼ (Γ′
1, T

′▷) and (Γ1,Γ2▷) ∼ (Γ′
1,Γ

′
2▷) we have to show that

(Γ1, T, tn+1Γ2) ∼ (Γ′
1, T

′, tn+1Γ
′
2).
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where n = l(Γ1) = l(Γ′
1).

Proceed by induction on l(Γ2). For l(Γ2) = 0 the assertion is obvious. Let (Γ1, T▷) ∼ (Γ′
1, T

′▷)
and (Γ1,Γ2, S▷) ∼ (Γ′

1,Γ
′
2, S

′▷). The later condition is equivalent to (Γ1,Γ2▷) ∼ (Γ′
1,Γ

′
2▷) and

(Γ1,Γ2 ⊢ S = S′). By the inductive assumption we have (Γ1, T, tn+1Γ2) ∼ (Γ′
1, T

′, tn+1Γ
′
2). By

(5a) we conclude that (Γ1, T, tn+1Γ2 ⊢ tn+1S = tn+1S
′). Therefore by definition of ∼ we have

(Γ1, T, tn+1Γ2, tn+1S) ∼ (Γ′
1, T

′, tn+1Γ
′
2, tn+1S

′).

(2) Given (Γ1, T▷) ∼ (Γ′
1, T

′▷) and (Γ1,Γ2 ⊢ o : S) ≃ (Γ′
1,Γ

′
2 ⊢ o′ : S′) we have to show that

(Γ1, T, tn+1Γ2 ⊢ tn+1o : tn+1S) ≃ (Γ′
1, T

′, tn+1Γ
′
2 ⊢ tn+1o

′ : tn+1S
′) where n = l(Γ1) = l(Γ′

1). We
have (Γ1,Γ2, S) ∼ (Γ′

1,Γ
′
2, S

′) and (Γ1,Γ2 ⊢ o = o′ : S). By (5b) we get (Γ1, T, tn+1Γ2 ⊢ tn+1o =
tn+1o

′ : tn+1S). By (1) of this lemma we get (Γ1, T, tn+1Γ2, tn+1S) ∼ (Γ′
1, T

′, tn+1Γ
′
2, tn+1S

′) and
therefore by definition of ≃ we get (Γ1, T, tn+1Γ2 ⊢ tn+1o : tn+1S) ≃ (Γ′

1, T
′, tn+1Γ

′
2 ⊢ tn+1o

′ :
tn+1S

′).

(3) Given (Γ1 ⊢ r : T ) ≃ (Γ′
1 ⊢ r′ : T ′) and (Γ1, T,Γ2▷) ∼ (Γ′

1, T
′,Γ′

2▷) we have to show that

(Γ1, sn+1(Γ2[r/n+ 1])) ∼ (Γ′
1, sn+1(Γ

′
2[r

′/n+ 1])).

where n = l(Γ1) = l(Γ′
1). Proceed by induction on l(Γ2). For l(Γ2) = 0 the assertion follows directly

from the definitions. Let (Γ1 ⊢ r : T ) ≃ (Γ′
1 ⊢ r′ : T ′) and (Γ1, T,Γ2, S▷) ∼ (Γ′

1, T
′,Γ′

2, S
′▷). The

later condition is equivalent to (Γ1, T,Γ2▷) ∼ (Γ′
1, T

′,Γ′
2▷) and (Γ1, T,Γ2 ⊢ S = S′). By the

inductive assumption we have (Γ1, sn+1(Γ2[r/n + 1])) ∼ (Γ′
1, sn+1(Γ

′
2[r

′/n + 1])). It remains to
show that (Γ1, sn+1(Γ2[r/n+1]) ⊢ sn+1(S[r/n+1]) = sn+1(S

′[r′/n+1])). By (2d) it is sufficient to
show that (Γ1, sn+1(Γ2[r/n+1]) ⊢ sn+1(S[r/n+1]) = sn+1(S

′[r/n+1])) and (Γ1, sn+1(Γ2[r/n+1]) ⊢
sn+1(S

′[r/n+ 1]) = sn+1(S
′[r′/n+ 1])). The first relation follows directly from (6a). To prove the

second one it is sufficient by (7a) to show that (Γ1, T,Γ2, S
′▷) which follows from our assumption

through (2c) and (2a).

(4) Given (Γ1 ⊢ r : T ) ≃ (Γ′
1 ⊢ r′ : T ′) and (Γ1, T,Γ2 ⊢ o : S) ≃ (Γ′

1, T
′,Γ′

2 ⊢ o′ : S′) we have to
show that

(Γ1, sn+1(Γ2[r/n+ 1]) ⊢ sn+1(o[r/n+ 1]) : sn+1(S[r/n+ 1])) ≃

(Γ′
1, sn+1(Γ

′
2[r

′/n+ 1]) ⊢ sn+1(o
′[r′/n+ 1]) : sn+1(S

′[r′/n+ 1])).

where n = l(Γ1) = l(Γ′
1) or equivalently that

(Γ1, sn+1(Γ2[r/n+ 1]), sn+1(S[r/n+ 1])) ∼ (Γ′
1, sn+1(Γ

′
2[r

′/n+ 1]), sn+1(S
′[r′/n+ 1]))

and (Γ1, sn+1(Γ2[r/n + 1]) ⊢ sn+1(o[r/n + 1]) = sn+1(o
′[r′/n + 1]) : sn+1(S[r/n + 1])). The first

statement follows from part (3) of the lemma. To prove the second statement it is sufficient by
(3d) to show that (Γ1, sn+1(Γ2[r/n+ 1]) ⊢ sn+1(o[r/n+ 1]) = sn+1(o

′[r/n+ 1]) : sn+1(S[r/n+ 1]))
and (Γ1, sn+1(Γ2[r/n + 1]) ⊢ sn+1(o

′[r/n + 1]) = sn+1(o
′[r′/n + 1]) : sn+1(S[r/n + 1])). The first

assertion follows directly from (6b). To prove the second one it is sufficient in view of (7b) to show
that (Γ1, T,Γ2 ⊢ o′ : S) which follows conditions (3c) and (3a).

(5) Given (Γ, T ) ∼ (Γ′, T ′) we need to show that (Γ, T ⊢ (n + 1) : T ) ≃ (Γ′, T ′ ⊢ (n + 1) : T ′) or
equivalently that (Γ, T, T ) ∼ (Γ, T ′, T ′) and (Γ, T ⊢ (n+1) = (n+1) : T ). The second part follows
from (3b). To prove the first part we need to show that (Γ, T ⊢ T = T ′). This follows from our
assumption by (5a).

Lemma 6.7 Let C be a subset of Ob(CC(M)) which is closed under ft. Let ≤ be a transitive
relation on C such that:

11



1. Γ ≤ Γ′ implies l(Γ) = l(Γ′),

2. Γ ∈ C and ft(Γ) ≤ F implies σ(Γ, F ) ∈ C and Γ ≤ σ(Γ, F ).

Then Γ ∈ C and fti(Γ) ≤ F for some i ≥ 1, implies that Γ ≤ σ(Γ, F ).

Proof: Simple induction on i.

Lemma 6.8 Let C and ≤ be as in Lemma 6.7. Then one has:

1. (Γ, T ) ≤ (Γ, T ′) and Γ ≤ Γ′ implies that (Γ, T ) ≤ (Γ′, T ′),

2. if ≤ is ft-monotone (i.e. Γ ≤ Γ′ implies ft(Γ) ≤ ft(Γ′)) and symmetric then (Γ, T ) ≤ (Γ′, T ′)
implies that (Γ, T ) ≤ (Γ, T ′).

Proof: The first assertion follows from

(Γ, T ) ≤ (Γ, T ′) ≤ σ((Γ, T ′),Γ′) = (Γ′, T ′)

The second assertion follows from

(Γ, T ) ≤ (Γ′, T ′) ≤ σ((Γ′, T ′),Γ) = (Γ, T ′)

where the second ≤ requires Γ′ ≤ Γ which follows from ft-monotonicity and symmetry.

Lemma 6.9 Let C,≤ be as in Lemma 6.7, let C̃ be a subset of Õb(CC(M)) and ≤′ a transitive
relation on C̃ such that:

1. J ≤′ J ′ implies ∂(J ) ≤ ∂(J ′),

2. J ∈ C̃ and ∂(J ) ≤ F implies σ̃(J , F ) ∈ C̃ and J ≤′ σ̃(J , F ).

Then J ∈ C̃ and fti(∂(J )) ≤ F for some i ≥ 0 implies J ≤ σ̃(J , F ).

Proof: Simple induction on i.

Lemma 6.10 Let C,≤ and C̃,≤′ be as in Lemma 6.9. Then one has:

1. (Γ ⊢ o : T ) ≤′ (Γ ⊢ o′ : T ) and (Γ, T ) ≤ (Γ′, T ′) implies that (Γ ⊢ o : T ) ≤′ (Γ′ ⊢ o′ : T ′),

2. if (≤,≤′) is ∂-monotone (i.e. J ≤′ J ′ implies ∂(J ) ≤ ∂(J ′)) and ≤ is symmetric then
(Γ ⊢ o : T ) ≤′ (Γ′ ⊢ o′ : T ′) implies that (Γ ⊢ o : T ) ≤′ (Γ ⊢ o′ : T ).

Proof: The first assertion follows from

(Γ ⊢ o : T ) ≤′ (Γ ⊢ o′ : T ) ≤′ σ̃((Γ ⊢ o′ : T ), (Γ′, T ′)) = (Γ′ ⊢ o′ : T ′)

The second assertion follows from

Γ ⊢ o : T ) ≤′ (Γ′ ⊢ o′ : T ′) ≤′ σ((Γ′ ⊢ o′ : T ′), (Γ, T )) = (Γ ⊢ o′ : T )

where the second ≤ requires Γ′ ≤ Γ which follows from ∂-monotonicity of ≤′ and symmetry of ≤.

12



Proposition 6.11 Let (C, C̃) be subsets in Ob(CC(M)) and Õb(CC(M)) respectively which corre-
spond to a C-subsystem CC of CC(M). Then the constructions presented above establish a bijection

between pairs of subsets (Ceq, C̃eq) which together with (C, C̃) satisfy the conditions of Proposition
6.2 and pairs of equivalence relations (∼,≃) on (C, C̃) such that:

1. (∼,≃) corresponds to a regular congruence relation on CC (i.e., satisfies the conditions of
[5, Proposition 5.4]),

2. Γ ∈ C and ft(Γ) ∼ F implies Γ ∼ σ(Γ, F ),

3. J ∈ C̃ and ∂(J ) ∼ F implies J ≃ σ̃(J , F ).

Proof: One constructs a pair (∼,≃) from (Ceq, C̃eq) as in Definition 6.1. This pair corresponds
to a regular congruence relation by Proposition 6.2. Conditions (2),(3) follow from Lemma 6.3.

Let (∼,≃) be equivalence relations satisfying the conditions of the proposition. Define Ceq as the

set of sequences (Γ, T, T ′) such that (Γ, T ), (Γ, T ′) ∈ C and (Γ, T ) ∼ (Γ, T ′). Define C̃eq as the set
of sequences (Γ, T, o, o′) such that (Γ, T, o), (Γ, T, o′) ∈ C̃ and (Γ, T, o) ≃ (Γ, T, o′).

Let us show that these subsets satisfy the conditions of Proposition 6.2. Conditions (2.a-2.d) and
(3.a-3d) are obvious.

Condition (4a) follows from (2) by Lemma 6.7. Conditions (4b) and (4c) follow from (3) by Lemma
6.9.

Conditions (5a) and (5b) follow from the compatibility of (∼,≃) with T and T̃ .

Conditions (6a),(6b),(7a),(7b) follow from the compatibility of (∼,≃) with S and S̃.
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