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Abstract

We construct for any finitary monad M on sets a C-system (contextual category) CC(M) and
describe, using the results of [2], the subsystems of CC(M) directly in terms of M . In the special
case of the monads of expressions associated with dependent signatures these constructions lead
to the contextual categories of computation-free dependent type systems.

1 Finitary monads on sets

A finitary monad (on sets) is a monad M : Sets → Sets that, as a functor, commutes with
filtering colimits. Since any set is, canonically, the colimit of the filtering diagram of its fi-
nite subsets, a functor Sets → Sets that commutes with filtering colimits can be equivalently
described as a functor FSets→ Sets where FSets is the category of finite sets.

The monad structure consists of two families of maps:

1. for any X ∈ Sets, a function X →M(X),

2. for any X ∈ Sets, a function M(M(X))→M(X)

which satisfy certain conditions. Given a monad structure on a functor M which commutes
with filtering colimits, finite sets X, X ′ and a function X ′ →M(X), the composition M(X ′)→
M(M(X))→M(X) is a function M(X ′)→M(X). This allows one to describe finitary monads
directly in terms of functors FSets→ Sets as follows:

Lemma 1.1 [2014.06.30.l1] The construction outline above defines an equivalence between
(the type of) finitary monads on Sets and (the type of) collections of data of the form:

1. for every finite set X a set M(X),

2. for every finite set X a function ιX : X →M(X),

3. for every finite sets X, X ′ and a function f : X → M(X ′), a function µ(f) : M(X) →
M(X ′)

which satisfy the following conditions:

1. for a finite set X, µ(ιX) = idM(X),

2. for a function of finite sets f : X → X ′, ιXµ(f) = f ,

3. for two functions f : X →M(X ′), g : X ′ →M(X ′′), µ(fµ(g)) = µ(f)µ(g).

Proof: See [].

The description of finitary monads given by Lemma 1.1 is much more convenient than the
direct definition for formalization.

For T ∈ M({x1, . . . , xn}) and f : X → M(X ′) such that f(xi) = fi we write µ(f)(T ) as
T (f1/x1, . . . , fn/xn).

For a finitary monad M we let M − cor (“M-correspondences”) to be the full subcategory of
the Kleisli category of M whose objects are finite sets. Recall, that the set of morphisms from
X to Y in M − cor is the set of maps from X to M(Y ) i.e. M(Y )X (in other words, M − cor
is the category of free, finitely generated M -algebras).
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We further let C(M) denote the pre-category3 with

Ob(C(M)) = N

Mor(C(M)) =
∐

m,n∈N

M({1, . . . ,m})n

which is equivalent, as a category, to (M − cor)op.
For E ∈M({1, . . . ,m}) and n ≥ 1 we set:

tn(E) = E[n+ 1/n, n+ 2/n+ 1, . . . ,m+ 1/m]

sn(E) = E[n/n+ 1, n+ 1/n+ 2, . . . ,m− 1/m]

If we were numbering elements of sets with n-elements from 0 then we would have tn = M(∂n−1)
and sn = M(σn−1) where ∂i and σi are the usual generators of the simplicial category.

Remark 1.2 The correspondence M 7→ C(M) defines an equivalence between the type of the
finitary monads on Sets and the type of the pre-category structures on N which extend the a
pre-category structure of finite sets and where the addition remains to be the coproduct.

Remark 1.3 A finitary sub-monad of M is the same as a sub-pre-category in C(M) which
contains all objects. Intersection of two sub-monads is a sub-monad which allows one to speak
of sub-monads generated by a set of elements.

2 C-system defined by a monad.

Let CC(M) be the pre-category whose set of objects is Ob(CC(M)) = qn≥0Obn where

Obn = M(∅)× . . .×M({1, . . . , n− 1})

and the set of morphisms is

Mor(CC(M)) =
∐

m,n≥0

Obm ×Obn ×M({1, . . . ,m})n

with the obvious domain and codomain maps. The composition of morphisms is defined in the
same way as in C(M) such that the mapping Ob(CC(M))→ N which sends all elements of Obn
to n, is a functor from CC(M) to C(M). The associativity of compositions follows immediately
from the associativity of compositions in M − cor.

Note that if M(∅) = ∅ then CC(M) = ∅ and otherwise the functor CC(M) → C(M) is an
equivalence, so that in the second case C(M) and CC(M) are indistinguishable as categories.
However, as pre-categories they are quite different.

The pre-category CC(M) is given the structure of a C-system as follows. The final object
is the only element of Ob0, the map ft is defined by the rule

ft(T1, . . . , Tn) = (T1, . . . , Tn−1).

The canonical pull-back square defined by an object (T1, . . . , Tn+1) and a morphism

(f1, . . . , fn) : (R1, . . . , Rm)→ (T1, . . . , Tn)

is of the form:

(R1, . . . , Rm, Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,m+1)−−−−−−−−−−→ (T1, . . . , Tn+1)

(1,...,m)

y y(1,...,n)

(R1, . . . , Rm)
(f1,...,fn)−−−−−−→ (T1, . . . , Tn)

(1)

3See the introduction to [2].
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Proposition 2.1 [2009.10.01.prop2] With the structure defined above CC(M) is a C-system.

Proof: Straightforward.

Any morphism of monads M →M ′ defines a C-system morphism CC(M)→ CC(M ′).

Remark 2.2 There is another construction of a pre-category from a finitary monad M which
takes as an additional parameter a set V ar which is called the set of variables. Let Fn(V ar) be
the set of sequences of length n of pair-wise distinct elements of V ar. Define the pre-category
CC(M,V ar) as follows. The set of objects of CC(M,V ar) is

Ob(CC(M,V ar)) = qn≥0 q(x1,...,xn)∈Fn(V ar) M(∅)× . . .×M({x1, . . . , xn−1})

For notational compatibility with the traditional type theory we will write the elements of
Ob(CC(M,X)) as sequences of the form x1 : E1, . . . , xn : En. The set of morphisms is given by

HomCC(M,,V ar)((x1 : E1, . . . , xm : Em), (y1 : T1, . . . , yn : Tn)) = M({x1, . . . , xm})n

The composition is defined in such a way that the projection

(x1 : E1, . . . , xn : En) 7→ (E1, E2(1/x1), . . . , En(1/x1, . . . , n− 1/xn−1))

is a functor from CC(M,V ar) to CC(M).
This functor is clearly an equivalence of categories but not an isomorphism of pre-categories.
There is an obvious final object and ft map on CC(M,V ar).
There is however a real problem in making it into a C-system which is due to the following.

Consider an object (y1 : T1, . . . , yn+1 : Tn+1) and a morphism (f1, . . . , fn) : (x1 : R1, . . . , xm :
Rm) → (y1 : T1, . . . , yn : Tn). In order for the functor to CC(M) to be a C-system morphism
the canonical square build on this pair should have the form

(x1 : R1, . . . , xm : Rm, xm+1 : Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,xn+1)−−−−−−−−−−→ (y1 : T1, . . . , yn+1 : Tn+1)y y

(x1 : R1, . . . , xm : Rm)
(f1,...,fn)−−−−−−→ (y1 : T1, . . . , yn : Tn)

where xm+1 is an element of V ar which is distinct from each of the elements x1, . . . , xm. More-
over, we should choose xm+1 in such a way the the resulting construction satisfies the C-system
axioms for (f1, . . . , fn) = Id and for the compositions (g1, . . . , gm) ◦ (f1, . . . , fn). One can easily
see that no such choice is possible for a finite set V ar. At the moment it is not clear to me
whether or not it is possible for an infinite V ar.

Remark 2.3 The pre-category C(M) also extends to a C-system which is defined as follows.
The final object is 0. The map ft is given by

ft(n) =

{
0 if n = 0
n− 1 if n > 0

The canonical projection n→ n−1 is given by the sequence (1, . . . , n−1). For f = (f1, . . . , fm) :
n→ m the canonical square build on f and the canonical projection m+ 1→ m is of the form

n+ 1
(f1,...,fm,n+1)−−−−−−−−−→ m+ 1y y

n
(f1,...,fm)−−−−−−→ m

Any morphism of monads M →M ′ defines a C-system morphism C(M)→ C(M ′). Non-trivial
C-subsystems of C(M) are in one-to-one correspondence with finitary sub-monads of M .

The natural projection CC(M) → C(M) is a C-system homomorphism. It’s C-system
sections are in one-to-one correspondence with M(∅) such that U ∈ M(∅) corresponds to the
section which takes the object n of C(M) to the object (U, . . . , U) of CC(M)
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Let us describe now the B-sets of the C-system CC(M). Recall from [2] the B-sets of a
C-system CC are the sets of two families:

Bn(CC) = {X ∈ Ob(C)|l(X) = n}

B̃n+1(CC) = {(X, s)|X ∈ Bn+1(CC), s : ft(X)→ X, s ◦ pX = Idft(X)}

Lemma 2.4 [2014.06.30.l2] One has:

Bn(CC(M)) = M(∅)× . . .×M({1, . . . , n− 1})

B̃n+1(CC(M)) = M(∅)× . . .×M({1, . . . , n− 1})×M({1, . . . , n})2

Proof: By definition we have

Ob(CC(M)) =
∐
n≥0

n−1∏
i=0

M({1, . . . , i})

which implies the first equality.

An element of Õb(CC(M)) is given by a pair (Γ, s) where Γ ∈ Ob(CC(M)) is an ob-
ject and s : ft(Γ) → Γ is a section of the canonical morphism pΓ : Γ → ft(Γ). It fol-
lows immediately from the definition of CC(M) that for Γ = (E1, . . . , En+1), a morphism
(f1, . . . , fn+1) ∈ M({1, . . . , n})n+1 from ft(Γ) to Γ is a section of pΓ if an only if fi = i for
i = 1, . . . , n. Therefore, any such section is determined by its last component fn+1 and mapping
((E1, . . . , En+1), (f1, . . . , fn+1)) to (E1, . . . , En, En+1, fn+1) we get a bijection

[2009.10.15.eq2]Õb(CC(M)) ∼=
∐
n≥0

(

n−1∏
i=0

M({1, . . . , i}))×M({1, . . . , n})2 (2)

which implies the second equality (bijection).

Using the notations of type theory we can write elements of Bn(CC(M)) as

Γ = (T1, . . . , TnB)

where Ti ∈M({1, . . . , i− 1}) and the elements of B̃n+1(CC(M)) as

J = (T1, . . . , Tn ` t : T )

where Ti ∈M({1, . . . , i− 1}) and t, T ∈M({1, . . . , n}).
In this notation the operations T, T̃ , S, S̃ and δ on the B-sets which were introduced in [2]

take the form:

1. T ((Γ, Tn+1B), (Γ,∆B)) = (Γ, Tn+1, tn+1(∆)B) when l(Γ) = n,

2. T̃ ((Γ, Tn+1B), (Γ,∆ ` r : R)) = (Γ, Tn+1, tn+1(∆) ` tn+1(r : R)) when l(Γ) = n,

3. S((Γ ` s : S), (Γ, S,∆B)) = (Γ, sn+1(∆[s/n+ 1])B) when l(Γ) = n,

4. S̃((Γ ` s : S), (Γ, S,∆ ` r : R)) = (Γ, sn+1(∆[s/n + 1]) ` sn+1((r : R)[s/n + 1]) when
l(Γ) = n,

5. δ(Γ, TB) = (Γ, T ` (n+ 1) : T ) when l(Γ) = n.

4



3 C-subsystems of CC(M).

Let TM be a C-subsystem of CC(M). By [2] TM is determined by the subsets B = Ob(TM)

and B̃ = Õb(TM) in Ob(CC(M)) and Õb(CC(M)).
For Γ = (E1, . . . , En) we write (ΓBTM ) if (E1, . . . , En) is in B and (Γ `TM t : T ) if

(E1, . . . , En, T, t) is in B̃.
The following result is an immediate corollary of [2, Theorem 4.1] together with the descrip-

tion of the B-sets and operations T, T̃ , S, S̃ and δ on them for CC(M) which is given above.

Proposition 3.1 [2009.10.16.prop3] Let M be a finitary monad on Sets. A pair of subsets

B ⊂
∐
n≥0

n−1∏
i=0

M({1, . . . , i})

B̃ ⊂
∐
n≥0

(

n−1∏
i=0

M({1, . . . , i}))×M({1, . . . , n})2

corresponds to a C-subsystem TM of CC(M) if and only if the following conditions hold:

1. (BTM )

2. (Γ, TBTM )⇒ (ΓBTM )

3. (Γ `TM r : R)⇒ (Γ, RBTM )

4. (Γ, TBTM ) ∧ (Γ,∆,`TM r : R)⇒ (Γ, T, tn+1(∆) `TM tn+1(r : R)) where n = l(Γ1)

5. (Γ `TM s : S) ∧ (Γ, S,∆ `TM r : R) ⇒ (Γ, sn+1(∆[s/n + 1]) `TM sn+1((r : R)[s/n + 1]))
where n = l(Γ1),

6. (Γ, TBTM )⇒ (Γ, T `TM n+ 1 : T ) where n = l(Γ).

Note that conditions (4) and (5) together with condition (6) and condition (3) imply the following

4a (Γ, TBTM ) ∧ (Γ,∆BTM )⇒ (Γ, T, tn+1(∆)BTM ) where n = l(Γ1),

5a (Γ `TM s : S) ∧ (Γ, S,∆BTM )⇒ (Γ, sn+1(∆[s/n+ 1])BTM ) where n = l(Γ1).

Note also that modulo condition (2), condition (1) is equivalent to the condition that B 6= ∅.

Remark 3.2 [2010.08.07.rem1] If one re-writes the conditions of Proposition 3.1 in the more
familiar in type theory form where the variables introduced in the context are named rather
than directly numbered one arrives at the following rules:

BTM

x1 : T1, . . . , xn : TnBTM

x1 : T1, . . . , xn−1 : Tn−1BTM

x1 : T1, . . . , xn : Tn `TM t : T

x1 : T1, . . . , xn : Tn, y : TBTM

x1 : T1, . . . , xn : Tn, y : T BTM x1 : T1, . . . , xn : Tn, . . . , xm : Tm `TM r : R

x1 : T1, . . . , xn : Tn, y : T, xn+1 : Tn+1, . . . , xm : Tm `TM r : R

x1 : T1, . . . , xn : Tn `TM s : S x1 : T1, . . . , xn : Tn, y : S, xn+1 : Tn+1, . . . , xm : Tm `TM r : R

x1 : T1, . . . , xn : Tn, xn+1 : Tn+1[s/y], . . . , xm : Tm[s/y] `TM (r : R)[s/y]

x1 : E1, . . . , xn : EnBTM

x1 : E1, . . . , xn : En `TM xn : En
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which are similar (and probably equivalent) to the ”basic rules of DTT” given in [1, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
sufficient for a given collection of contexts and judgements to define a C-system.

Lemma 3.3 [2009.11.05.l1] Let TM be as above and let (E1, . . . , Em), (T1, . . . , Tn) ∈ B∗(TM)
and (f1, . . . , fn) ∈M({1, . . . ,m})n. Then

(f1, . . . , fn) ∈ HomTM ((E1, . . . , Em), (T1, . . . , Tn))

if and only if (f1, . . . , fn−1) ∈ HomTM ((E1, . . . , Em), (T1, . . . , Tn−1)) and

(E1, . . . , Em, Tn(f1/1, . . . , fn−1/n− 1), fm) ∈ B̃m+1(TM)

Proof: Straightforward using the fact that the canonical pull-back squares in CC(M) are given
by (1).
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