Bloch-Kato Conjecture

Vladimir Voevodsky

Started February 08, 2010

Homology: Let $f : A \to B$, $g : B \to C$ be homomorphisms of abelian groups such that for all $a \in A$ one has g(f(a)) = 0. Define H(f,g) as the abelian group with generators [b] for each $b \in B$ such that g(b) = 0 and relations $[b_1] + [b_2] = [b_1 + b_2]$ and [b] + [f(a)] = [b].

Group cohomology: Let G be a group. We write the operation in G as $(g_1, g_2) \mapsto g_1g_2$ and the unit of G as e. A module over G is an abelian group M together with a map $ms: G \times M \to M$ such that for all $g_1, g_2, g \in G$ and $m, m_1, m_2 \in M$ one has $ms(g_1g_2, m) = ms(g_1, ms(g_2, m))$, $ms(e, m) = m, ms(g, m_1 + m_2) = ms(g, m_1) + ms(g, m_2)$ and ms(g, 0) = 0.

For a G-module M and a natural number n define $C^n(G, M)$ as the set of maps $G^n \to M$ where $G^0 = pt$ and $G^{n+1} = G^n \times G$. This set has a structure of a abelian group given by $(\phi + \psi)(x) = \phi(x) + \psi(x)$.

Define for each natural number $n \ge 0$ a map $d^n : C^n(G, M) \to C^{n+1}(G, M)$ inductively as follows. First define maps $d_i^n : C^n(G, M) \to C^{n+1}(G, M)$ for i = 0, ..., n + 1:

- d_0^n is given by $d_0^n(\phi)(g_1, \dots, g_{n+1}) = ms(g_1, \phi(g_2, \dots, g_{n+1})),$
- for $i = 1, \ldots, n, d_i^n$ is given by $d_i^n(\phi)(g_1, \ldots, g_{n+1}) = \phi(g_1, \ldots, g_i g_{i+1}, \ldots, g_{n+1}),$
- d_{n+1}^n is given by $d_i^n(\phi)(g_1, \dots, g_{n+1}) = \phi(g_1, \dots, g_n).$

Now set for $g = (g_1, ..., g_{n+1})$:

$$d^{n}(\phi)(g) = d^{n}_{0}(\phi)(g) + \left(\sum_{i=1}^{n} (-1)^{i} d^{n}_{i}(\phi)(g)\right) + (-1)^{n+1} d^{n}_{n+1}(\phi)(g).$$

Lemma 1 For any G, M, n and $\phi \in C^n(G, M)$ one has $d^{n+1}(d^n(\phi)) = 0$.

Because of this lemma the construction of $H(d^n, d^{n+1})$ is applicable and one defines:

$$H^0(G, M) = H(0, d^0)$$

 $H^{n+1}(G, M) = H(d^n, d^{n+1})$

where 0 is the unique homomorphism $0 \to C^0(G, M)$.

Tensor products: Let A, B be abelian groups. We write the operations in A and B as + and units as 0.

The tensor product $A \otimes B$ is the abelian group given by generators $a \otimes b$ where $a \in A$ and $b \in B$ and relations $(a + a') \otimes b = a \otimes b + a' \otimes b$, $a \otimes (b + b') = a \otimes b + a \otimes b'$ and $0 \otimes b = a \otimes 0 = 0$.

Given two modules M and N over G the tensor product $M \otimes N$ of the underlying abelian groups has a module structure given by $ms(g, a \otimes b) = ms(g, a) \otimes ms(g, b)$.

For a natural number *n* define inductively $M^{\otimes n}$ setting $M^{\otimes 0} = \mathbf{Z}$ where \mathbf{Z} is considered with the trivial action of *G* and $M^{\otimes (n+1)} = M^{\otimes n} \otimes M$.

Cup product in group cohomology: Let G be a group and M, N be two G-modules. For any two natural numbers n, m define a map

$$sm_{n,m}: C^n(G,M) \times C^m(G,N) \to C^{n+m}(G,M \otimes N)$$

setting

$$sm_{n,m}(\phi,\psi)(g_1,\ldots,g_{n+m}) = (-1)^{n+m}(\phi(g_1,\ldots,g_n) \otimes ms(g_1\ldots g_n,\psi(g_{n+1},\ldots,g_{n+m})))$$

Lemma 2 The map $sm_{n,m}$ respects the relations defining \otimes and therefore defines a homomorphism of abelian groups

$$\sim_{n,m} : C^n(G,M) \otimes C^m(G,N) \to C^{n+m}(G,M \otimes N)$$

Lemma 3 For any $a \in C^n(G, M)$, $a' \in C^m(G, N)$ one has

$$d^{n+m}(a \sim_{n,m} a') = d^n(a) \sim_{n+1,m} a' + (-1)^n a \sim_{n,m+1} d^m(a')$$

Lemma 4 For any $a \in C^n(G, M)$, $a' \in C^m(G, N)$ such that $d^n(a) = 0$ and $d^m(a') = 0$ one has $d^{n+m}(a \otimes a') = 0$.

Lemma 5 For any $b \in C^n(G, M)$, $a' \in C^m(G, N)$ such that $d^m(a') = 0$ one has

$$d^{n}(b) \smile_{n+1,m} a' = d^{n+m}(b \smile_{n,m} a')$$

Lemma 6 For any $a \in C^n(G, M)$ such that $d^n(a) = 0$ and $b' \in C^m(G, N)$ one has

$$a \sim_{n,m+1} d^m(b') = (-1)^n d^{n+m} (a \sim_{n,m} b')$$

From these lemmas one deduces easily that the homomorphism $\sim_{n,m}$ defines a homomorphism

$$H^{n}(G,M) \otimes H^{m}(G,N) \to H^{n+m}(G,M \otimes N)$$

which we denote by the same symbol $\smile_{n,m}$.

Fields: A field k is a commutative, associative ring with a unit 1_k such that for any $a \in k$ satisfying $a \neq 0$ there exists $b \in k$ such that $ab = 1_k$.

The set of non-zero elements of a field is an abelian group with respect to multiplication and we denote it by k^* .

If $n \in \mathbf{N}$ is a natural number such that $n \cdot \mathbf{1}_k \neq 0$ then n is said to be invertible in k.

For a natural number n we denote by $\mu_n(k)$ the subset of k^* which consists of elements a such that $a^n = 1_k$. This is easily seen to be a subgroup of k^* and in particular an abelian group.

A field is called algebraically closed if for any non-constant polynomial $f(x) \in k[x]$ over k there exists $a \in k$ such that f(a) = 0.

Bloch-Kato Conjecture

Let \bar{k} be an algebraically closed field. Let k be a subfield of \bar{k} such that \bar{k} is algebraic over k i.e. such that every element of \bar{k} is a root of non-constant polynomial with coefficients in k. Let q be a natural number which is invertible in k.

Let $Gal(\bar{k}/k)$ be the group of automorphisms of \bar{k} which act trivially on k. This group acts in particular on $\mu_q(\bar{k})$ in such a way that $\mu_q(\bar{k})$ becomes a $Gal(\bar{k}/k)$ -module.

For each natural number $n \ge 1$ define the homomorphism of abelian groups

$$bk_n: H^1(Gal(\bar{k}/k), \mu_q(\bar{k}))^{\otimes n} \to H^n(Gal(\bar{k}/k), (\mu_q(\bar{k}))^{\otimes n})$$

inductively by the rule $bk_1(x) = x$ and $bk_{n+1}(x_n \otimes x) = bk_n(x_n) \smile_{n,1} x$.

Theorem 7 ("Bloch-Kato Conjecture") For any \bar{k} , k, q as above and any natural number $n \ge 1$, the map bk_n is surjective.