Bloch-Kato Conjecture

Vladimir Voevodsky

Started February 08, 2010

Homology: Let $f: A \rightarrow B, g: B \rightarrow C$ be homomorphisms of abelian groups such that for all $a \in A$ one has $g(f(a))=0$. Define $H(f, g)$ as the abelian group with generators [b] for each $b \in B$ such that $g(b)=0$ and relations $\left[b_{1}\right]+\left[b_{2}\right]=\left[b_{1}+b_{2}\right]$ and $[b]+[f(a)]=[b]$.
Group cohomology: Let G be a group. We write the operation in G as $\left(g_{1}, g_{2}\right) \mapsto g_{1} g_{2}$ and the unit of G as e. A module over G is an abelian group M together with a map $m s: G \times M \rightarrow M$ such that for all $g_{1}, g_{2}, g \in G$ and $m, m_{1}, m_{2} \in M$ one has $m s\left(g_{1} g_{2}, m\right)=m s\left(g_{1}, m s\left(g_{2}, m\right)\right)$, $m s(e, m)=m, m s\left(g, m_{1}+m_{2}\right)=m s\left(g, m_{1}\right)+m s\left(g, m_{2}\right)$ and $m s(g, 0)=0$.
For a G-module M and a natural number n define $C^{n}(G, M)$ as the set of maps $G^{n} \rightarrow M$ where $G^{0}=p t$ and $G^{n+1}=G^{n} \times G$. This set has a structure of a abelian group given by $(\phi+\psi)(x)=$ $\phi(x)+\psi(x)$.

Define for each natural number $n \geq 0$ a map $d^{n}: C^{n}(G, M) \rightarrow C^{n+1}(G, M)$ inductively as follows. First define maps $d_{i}^{n}: C^{n}(G, M) \rightarrow C^{n+1}(G, M)$ for $i=0, \ldots, n+1$:

- d_{0}^{n} is given by $d_{0}^{n}(\phi)\left(g_{1}, \ldots, g_{n+1}\right)=m s\left(g_{1}, \phi\left(g_{2}, \ldots, g_{n+1}\right)\right)$,
- for $i=1, \ldots, n, d_{i}^{n}$ is given by $d_{i}^{n}(\phi)\left(g_{1}, \ldots, g_{n+1}\right)=\phi\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right)$,
- d_{n+1}^{n} is given by $d_{i}^{n}(\phi)\left(g_{1}, \ldots, g_{n+1}\right)=\phi\left(g_{1}, \ldots, g_{n}\right)$.

Now set for $g=\left(g_{1}, \ldots, g_{n+1}\right)$:

$$
d^{n}(\phi)(g)=d_{0}^{n}(\phi)(g)+\left(\sum_{i=1}^{n}(-1)^{i} d_{i}^{n}(\phi)(g)\right)+(-1)^{n+1} d_{n+1}^{n}(\phi)(g) .
$$

Lemma 1 For any G, M, n and $\phi \in C^{n}(G, M)$ one has $d^{n+1}\left(d^{n}(\phi)\right)=0$.
Because of this lemma the construction of $H\left(d^{n}, d^{n+1}\right)$ is applicable and one defines:

$$
\begin{gathered}
H^{0}(G, M)=H\left(0, d^{0}\right) \\
H^{n+1}(G, M)=H\left(d^{n}, d^{n+1}\right)
\end{gathered}
$$

where 0 is the unique homomorphism $0 \rightarrow C^{0}(G, M)$.
Tensor products: Let A, B be abelian groups. We write the operations in A and B as + and units as 0 .
The tensor product $A \otimes B$ is the abelian group given by generators $a \otimes b$ where $a \in A$ and $b \in B$ and relations $\left(a+a^{\prime}\right) \otimes b=a \otimes b+a^{\prime} \otimes b, a \otimes\left(b+b^{\prime}\right)=a \otimes b+a \otimes b^{\prime}$ and $0 \otimes b=a \otimes 0=0$.

Given two modules M and N over G the tensor product $M \otimes N$ of the underlying abelian groups has a module structure given by $m s(g, a \otimes b)=m s(g, a) \otimes m s(g, b)$.
For a natural number n define inductively $M^{\otimes n}$ setting $M^{\otimes 0}=\mathbf{Z}$ where \mathbf{Z} is considered with the trivial action of G and $M^{\otimes(n+1)}=M^{\otimes n} \otimes M$.

Cup product in group cohomology: Let G be a group and M, N be two G-modules. For any two natural numbers n, m define a map

$$
s m_{n, m}: C^{n}(G, M) \times C^{m}(G, N) \rightarrow C^{n+m}(G, M \otimes N)
$$

setting

$$
s m_{n, m}(\phi, \psi)\left(g_{1}, \ldots, g_{n+m}\right)=(-1)^{n+m}\left(\phi\left(g_{1}, \ldots, g_{n}\right) \otimes m s\left(g_{1} \ldots g_{n}, \psi\left(g_{n+1}, \ldots, g_{n+m}\right)\right)\right)
$$

Lemma 2 The map $s m_{n, m}$ respects the relations defining \otimes and therefore defines a homomorphism of abelian groups

$$
\smile_{n, m}: C^{n}(G, M) \otimes C^{m}(G, N) \rightarrow C^{n+m}(G, M \otimes N)
$$

Lemma 3 For any $a \in C^{n}(G, M), a^{\prime} \in C^{m}(G, N)$ one has

$$
d^{n+m}\left(a \smile_{n, m} a^{\prime}\right)=d^{n}(a) \smile_{n+1, m} a^{\prime}+(-1)^{n} a \smile_{n, m+1} d^{m}\left(a^{\prime}\right)
$$

Lemma 4 For any $a \in C^{n}(G, M), a^{\prime} \in C^{m}(G, N)$ such that $d^{n}(a)=0$ and $d^{m}\left(a^{\prime}\right)=0$ one has $d^{n+m}\left(a \otimes a^{\prime}\right)=0$.

Lemma 5 For any $b \in C^{n}(G, M), a^{\prime} \in C^{m}(G, N)$ such that $d^{m}\left(a^{\prime}\right)=0$ one has

$$
d^{n}(b) \smile_{n+1, m} a^{\prime}=d^{n+m}\left(b \smile_{n, m} a^{\prime}\right)
$$

Lemma 6 For any $a \in C^{n}(G, M)$ such that $d^{n}(a)=0$ and $b^{\prime} \in C^{m}(G, N)$ one has

$$
a \smile_{n, m+1} d^{m}\left(b^{\prime}\right)=(-1)^{n} d^{n+m}\left(a \smile_{n, m} b^{\prime}\right)
$$

From these lemmas one deduces easily that the homomorphism $\smile_{n, m}$ defines a homomorphism

$$
H^{n}(G, M) \otimes H^{m}(G, N) \rightarrow H^{n+m}(G, M \otimes N)
$$

which we denote by the same symbol $\smile_{n, m}$.
Fields: A field k is a commutative, associative ring with a unit 1_{k} such that for any $a \in k$ satisfying $a \neq 0$ there exists $b \in k$ such that $a b=1_{k}$.
The set of non-zero elements of a field is an abelian group with respect to multiplication and we denote it by k^{*}.
If $n \in \mathbf{N}$ is a natural number such that $n \cdot 1_{k} \neq 0$ then n is said to be invertible in k.
For a natural number n we denote by $\mu_{n}(k)$ the subset of k^{*} which consists of elements a such that $a^{n}=1_{k}$. This is easily seen to be a subgroup of k^{*} and in particular an abelian group.
A field is called algebraically closed if for any non-constant polynomial $f(x) \in k[x]$ over k there exists $a \in k$ such that $f(a)=0$.

Bloch-Kato Conjecture

Let \bar{k} be an algebraically closed field. Let k be a subfield of \bar{k} such that \bar{k} is algebraic over k i.e. such that every element of \bar{k} is a root of non-constant polynomial with coefficients in k. Let q be a natural number which is invertible in k.
Let $\operatorname{Gal}(\bar{k} / k)$ be the group of automorphisms of \bar{k} which act trivially on k. This group acts in particular on $\mu_{q}(\bar{k})$ in such a way that $\mu_{q}(\bar{k})$ becomes a $\operatorname{Gal}(\bar{k} / k)$-module.
For each natural number $n \geq 1$ define the homomorphism of abelian groups

$$
b k_{n}: H^{1}\left(\operatorname{Gal}(\bar{k} / k), \mu_{q}(\bar{k})\right)^{\otimes n} \rightarrow H^{n}\left(\operatorname{Gal}(\bar{k} / k),\left(\mu_{q}(\bar{k})\right)^{\otimes n}\right)
$$

inductively by the rule $b k_{1}(x)=x$ and $b k_{n+1}\left(x_{n} \otimes x\right)=b k_{n}\left(x_{n}\right) \smile_{n, 1} x$.
Theorem 7 ("Bloch-Kato Conjecture") For any \bar{k}, k, q as above and any natural number $n \geq 1$, the map $b k_{n}$ is surjective.

