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Let M be a smooth manifold. In the previous lectures, we showed that M admits a Whitehead compat-
ible triangulation, so that we can regard M as having an underlying piecewise linear manifold. Moreover,
this piecewise linear manifold is unique up to piecewise linear homeomorphism. Our goal for the next few
lectures is to obtain a more precise form of this statement. For example, we would like to show that every
diffeomorphism of smooth manifolds determines a PL homeomorphism, every smooth isotopy of diffeomor-
phisms determines a piecewise linear isotopy, and so forth. We can summarize the situation by saying that
there is a classifying space for smooth manifolds which maps to a suitable classifying space for PL manifolds.
Our goal in this lecture is to define the relevant classifying spaces and to outline the relationship between
them.

We begin with the smooth case. Let M be a compact smooth manifold. We let C∞(M,M) denote the set
of smooth maps from M to itself, and Diff(M) the subset consisting of diffeomorphisms. The set C∞(M,M)
can be endowed with a topology, where a sequence of functions f1, f2, . . . : M →M converges to a function
f : M →M if all of the derivatives of {fi} converge uniformly to the derivatives of f . With respect to this
topology, C∞(M,M) is a Frechet manifold, and the collection of diffeomorphisms Diff(M) is an open subset
(hence also a Frechet manifold).

We will generally not be interested in the exact definition of Diff(M) (such as the analytic details of
what constitutes a convergent sequence of diffeomorphisms), but only the underlying homotopy type. It is
therefore convenient to discard the topological space Diff(M) and work instead with its singular complex
Sing•(Diff(M)). This is a simplicial set whose n-simplices are given by the formula

Singn(Diff(M)) = Hom(∆n,Diff(M)).

By general nonsense, we can recover a space homotopy equivalent to Diff(M) by passing to the geometric
realization |Singn Diff(M)|.

Unwinding the definitions, we can describe the simplices of Sing•Diff(M) more explicitly as follows: an
n-simplex of Sing•Diff(M) is a homeomorphism

f : M ×∆n →M ×∆n

with the following properties:

(1) The function f commutes with the projection to ∆n.

(2) The function f is smooth in the first variable. In other words, if we write f as f(m, t), then f has
arbitrarily many derivatives in the first variable, and these derivatives are continuous in both variables.

(3) For every t ∈ ∆n, the induced map ft : M →M (which is smooth, by virtue of (2)) is a diffeomorphism.

The advantage of this description is that it does away with some analysis. It tends to be easier to describe
what we mean by a continuous map K → Diff(M) when K is a simplex (which is equivalent to describing the
simplicial set Sing•Diff(M)) than in the case where K is a general space (which is equivalent to describing
the topological space Diff(M)).
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It is even easier to describe the class of smooth maps from a simplex into Diff(M). These can be organized
into another simplicial set Singsm

• Diff(M), whose n-simplices are diffeomorphisms f : M ×∆n → M ×∆n

which commute with the projection to ∆n. There is no harm in restricting our attention to such simplices,
by virtue of the following:

Proposition 1. The inclusion Singsm
• Diff(M) ⊆ Sing•Diff(M) is a homotopy equivalence of Kan complexes.

Proof. By general nonsense, it suffices to show the following: given a map f0 : ∂∆k → Singsm
• Diff(M) and

an extension of f0 to f : ∆k → Sing•Diff(M), there exists another extension f ′ : ∆k → Singsm
• Diff(M)

which is homotopic to f via a homotopy fixed on f0.
Unwinding the definitions, we can view f0 as a smooth map M × ∂∆k → M and f as an extension

M×∆k →M . Identify M with a smooth submanifold of Rn for n� 0, and let N be a tubular neighborhood
of M in Rn equipped with a smooth projection π : N →M .

Since f0 is smooth, it can be extended to a smooth map f1 : M × U0 → M where U0 is an open
neighborhood of ∂∆k. Shrinking U0 if necessary, we may assume that f1|M × {t} is a diffeomorphism for
each t ∈ U0. Choose an open covering of ∆k−U0 by small open subsets {Ui ⊆ ∆k}1≤i≤n, choose a point ti in
each Ui, and let fi : M ×∆k →M be given by the formula fi(m, t) = f(m, ti). Let {φi : ∆k → [0, 1]}0≤i≤n
be a smooth partition of unity subordinate to the covering {Ui}0≤i≤n. We now define f ′ by the formula
f ′(m, t) = π(

∑
0≤i≤n φi(t)fi(m, t)). If the open covering is fine enough, then f ′ will be a smooth extension

of f0 which is a diffeomorphism for each t ∈ ∆k, and the functions

hs(m, t) = π(sf(m, t) + (1− s)f ′(m, t))

will give a homotopy from f to f ′ which is fixed on M × ∂∆k.

Remark 2. The definitions of Sing•Diff(M) and Singsm
• Diff(M) extend easily to the case when M is not

compact. In this case, one can also define a topology on Diff(M), but the discussion becomes more technical.

It is convenient to study topological groups G by means of their classifying spaces. In our context, there
is a convenient model for these classifying spaces.

Notation 3. Let V be a finite dimensional real vector space, and M a smooth m-manifold. We let
Embsm(M,V ) denote the simplicial set of embeddings of M into V : that is, the simplicial set whose n-
simplices are smooth embeddings M × ∆n → V × ∆n which commute with the projection to n. We let
Submsm(V ) denote the simplicial set of submanifolds of V , whose n-simplices are given by smooth submani-
folds X ⊆ V ×∆n such that the projection X → ∆n is a smooth fiber bundle of relative dimension m.

If V is infinite dimensional, we let Embsm(M,V ) and Submsm(V ) denote the direct limits of Embsm(M,V0)
and Subsm(V0), as V0 ranges over all finite dimensional subspaces of V .

Remark 4. There is a canonical (free) action of Singsm
• Diffsm(M) on Embsm(M,V ), and the quotient

Embsm(M,V )/Singsm
• Diff(M) can be identified with the union of those components of Submsm(V ) spanned

by submanifolds of V which are diffeomorphic to M .

Remark 5. If V is infinite dimensional, then the simplicial set Embsm(M,V ) is a contractible Kan complex.
In other words, every smooth embedding M × ∂∆n → V0 × ∂∆n can be extended to a smooth embedding
M ×∆n → V1 ×∆n for some V0 ⊆ V1. This follows from general position arguments.

Combining these remarks, we obtain the following:

Proposition 6. Let V be infinite dimensional. Then the simplicial set Submsm(V ) is homotopy equivalent
to a disjoint union

∐
M B(Singsm

• Diff(M)), where M ranges over all diffeomorphism types of smooth m-
manifolds.

We note that all of the above constructions make sense also in the piecewise linear category. Namely, we
have the following definitions:
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(1) If M is a piecewise linear m-manifold, we can define a simplicial group HomeoPL(M)•, whose n-
simplices are PL homeomorphisms from M ×∆n to itself that commute with the projection to ∆n.

(2) If V is a finite dimensional vector space, we let EmbPL(M,V ) be the simplicial set whose n-simplices
are PL embeddings M ×∆n → V ×∆n which commute with the projection to ∆n. These simplicial
sets are acted on freely by HomeoPL(M)•.

(3) If V is infinite dimensional, we set EmbPL(M,V ) = lim−→V0
EmbPL(M,V ), where the colimit is taken

over all finite dimensional subspaces V0 ⊆ V . As before, general position arguments guarantee that
EmbPL(M,V ) is a contractible Kan complex, so that the quotient EmbPL(M,V )/HomeoPL(M)• is a
classifying space for HomeoPL(M)•.

(4) If V is a finite dimensional vector space, we let SubmPL(V ) denote the simplicial set whose n-simplices
are subpolyhedra X ⊆ V ×∆n which are PL homeomorphic to M ×∆n, for some PL m-manifold M .
If V is infinite dimensional set SubmPL(V ) = lim−→V0⊂V

SubmPL(V0).

We have the following analogue of Proposition 7:

Proposition 7. Let V be infinite dimensional. Then the simplicial set SubmPL(V ) is homotopy equivalent to
a disjoint union

∐
M B(HomeoPL(M)), where M ranges over all diffeomorphism types of PL m-manifolds.

Fix an infinite dimensional vector space V . We define Manmsm = Submsm(V ), and ManmPL = SubmPL(V ).
We can think of Manmsm and ManmPL as classifying spaces for smooth and PL m-manifolds, respectively. We
wish to compare these classifying spaces. To this end, we introduce the following definition:

Definition 8. We define a simplicial set ManmPD as follows. The n-simplices of ManmPD are triples (K,M, f)
where K ⊆ V ×∆n is an n-simplex of ManmPL, M ⊆ V ×∆n is an n-simplex of Manmsm, and f : K → M is
a PD homeomorphism which commutes with the projection to ∆n.

By construction, we have forgetful maps

ManmPL
θ′← ManmPD

θ→ Manmsm .

In the next lecture, we will sketch the following more refined version of Whitehead’s results on the existence
and uniqueness of triangulations:

Theorem 9. The map θ is a trivial Kan fibration.

It follows that θ admits a section s. Composing s with θ′, we obtain a map of classifying spaces Manmsm →
ManmPL: this is a fancy way of saying that every family of smooth manifolds admits a family of triangulations.

We will eventually sketch the proof of the following “converse”:

Theorem 10. If m ≤ 3, then the map θ′ is a trivial Kan fibration. In particular, the Kan complexes ManmPL
and Manmsm are homotopy equivalent to one another.
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