The Dehn-Nielsen Theorem (Lecture 38)
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In this lecture, we will complete our understanding of the homotopy types of diffeomorphism groups of
hyperbolic surfaces by proving the following result:

Theorem 1 (Dehn-Nielsen). Let ¥ be a compact oriented surface with x(¥) = —k < 0. Then the map
Diff5(X) — Outs(X) is surjective.

Since Outy(X) is the group of connected components of the space Autg(X) of self-homotopy equivalences
of ¥ which are fixed on the boundary, we can reformulate Theorem 1 as follows:

Theorem 2. Let f : ¥ — ¥’ be a homotopy equivalence between compact oriented surfaces with x(X) =
X(X') = —k < 0. Assume that f restricts to a diffeomorphism 03 ~ d%'. Then f is homotopic (relative to
the boundary of ¥) to a diffeomorphism ¥ ~ ¥,

We may assume without loss of generality that f is a smooth map, and that f~' 9% = 0%. Choose a
system of disjoint simple closed curves Cy,Cs, ..., C, in ¥’ which cut ¥’ into a union of finitely many pairs
of pants (an Euler characteristic calculation shows that the number of pairs of pants must be exactly k, so
that ¥’ = Py U...U Pg). Modifying f slightly, we may assume that f is transverse to the curves C;. Let
T = f~1(C1U...UC,), so that T is a smooth submanifold of ¥ consisting of some finite number m of circles.
We will assume that f has been chosen (in its homotopy class) so as to minimize m.

Let Q1,...,Qk be the collection of components of the surface obtained by cutting ¥ along T'; we will
identify each @; with a closed subset of X.

Claim 3. Fach Q; has nonpositive Euler characteristic.

Proof. If not, some (); must be a disk. Say f carries the boundary of @); into the circle C, and Q; itself into a
pair of pants P. Then f determines a class in the relative homotopy group w5 (P, C'), which is the fundamental
group of the homotopy fiber of the inclusion C' — P. Since mC — w1 P, the relevant homotopy fiber is
homotopy equivalent to the discrete space w1 P/mC, and has a trivial fundamental group. Consequently,
f1Q; is homotopic to a map carrying @, into the circle C. Modifying this map by a small homotopy, we obtain
a new map f’ homotopic to the original f, such that f'~'(Cy U...UC,) has fewer connected components
than T. This contradicts the minimality of m. O

Claim 4. Let T; be a connected component of T, and suppose that f carries T; into Cj. Then:
(1) The map f|T; : T; — C; has degree £1.
(2) The loop T; is not homotopic to any boundary loop of .

Proof. We first claim that T; is not nullhomotopic in . Otherwise, T; would bound an embedded disk.
Inside this disk we can find an “innermost” component T; of T', which also bounds a disk, contradicting
Claim 3. Thus [T}] is nontrivial in 7 3. Since f is a homotopy equivalence, f.[T;] = [C;]¢ is nontrivial in
m1%/, where d is the degree of f|T;. It follows that d # 0. If |d| > 1, then f,[T;] is divisible in m ¥, so that
[T;] is divisible in 71 %; this contradicts our assumption that f is an embedded loop.

To prove (2), we note that if [T}] is conjugate to some boundary component of ¥, then f.[T;] ~ [C;]F! is
conjugate to some boundary component of ¥’, which contradicts our choice of C;. O



Adjusting f by a homotopy, we may assume that the restriction of f to each component of T is a
diffeomorphism onto one of the circles C;.

Claim 5. Fach Q; has negative Fuler characteristic.

Proof. Assume that x(Q;) > 0. It follows from Claim 3 that x(Q;) = 0, so that @; is an annulus. Using
Claim 4, we deduce that both boundary components of Q); belong to T. Let us denote these boundary
components by B and B’. Let P be the pair of pants containing f(Q;). Then f(B) and f(B’) are boundary
components of P. Since f(B) and f(B’) are freely homotopic in P, they must be the same boundary
component Py C P. Consider the map

¢ : Map(S*, Py) — Map(S*, P).

If we restrict attention to the connected component containing the isomorphism S' ~ P,, then ¢ is a
homotopy equivalence: this follows from the observation that the centralizer of [Fp] in m P is isomorphic
to its centralizer in moPy ~ Z. Consequently, the map @; — P is homotopic (relative to its boundary) to
a map @; — Py. Modifying this map by a small homotopy, we obtain a new map f’ : ¥’ — X such that
f’fl(Cl7 ..., Cy) has fewer than m components, which is a contradiction. O

Since the map f has degree £1 (being a homotopy equivalence) it must be surjective. Consequently,
the inverse image of each P; is a finite union of @);’s. According to Claim 5, each of these components has
negative Euler characteristic. It follows that x(f~1(P;)) < —1. We have

—k=xE)=x(f'P)+.. .+ x(fP) <14 1=k

It follows that each f~!P; must consist of exactly one connected component (which we will denote by Q;)
having Euler characteristic —1. Since the map f is surjective, ; — P; is surjective, so that @; has at
least three boundary components. It follows that @; is also a pair of pants, and that f restricts to a map
fi : Q; — P; which is a diffeomorphism between their boundaries. To complete the proof, it will suffice to
show that each f; is homotopic to a diffeomorphism.

Choose disjoint smooth arcs Dj, Do, D3 which join the boundary components of P;. We may assume
without loss of generality that f; is transverse to the arcs Dj, so that f;le is a smooth submanifold (with
boundary) of Q;. The boundary of f;"'(D; U Dy U D3) is f; *((Dy U Dy U D3) N P;) which consists of six
points (since f; is a diffeomorphism on the boundaries). It follows that f; '(D; U Dy U D3) consists of three
arcs together with m/ circles, for some m’ > 0. Let us denote these arcs by D}, D5, and D%; modifying f;
by a homotopy we may assume that D; maps homeomorphically onto D; for j € {1,2,3}.

We will assume that f; has been chosen (in its homotopy class) to minimize m/. Cutting @Q; along the
arcs D}, D}, and D}, we obtain a decomposition Q; ~ Q; U Q;, where Q; and Q; are disks.

Claim 6. The integer m’ is equal to zero.

Proof. Let C be a circle component of fi_l(Dl U Dy U D3). Without loss of generality, CC Qj'. Choosing a
different circle component if necessary, we may assume that C is innermost: that is, C bounds a disk E such
that EN f~1(D; U Dy U D3) = 9 E = C. Without loss of generality, the map f carries d E to the arc D;.
Then f determines a class in the relative homotopy group mo(E’, D1), where E’ is one of the disks obtained
by cutting P; along D1 U Dy U Dj3). Since E' and D; are both contractible, this homotopy group is trivial. It
follows that f;|E is homotopic (relative to its boundary) to a map carrying E into D;. Modifying this map
by a small homotopy, we obtain a new map f/ such that f/ 71(D1 U D2 U D3) has fewer circle components,
contradicting the minimality of m/. O

The arcs Dy U Dy U D3 cut P; into two components, which we will denote by P;r and P, . Using Claim
6, we may assume without loss of generality that f; restricts to a pair of maps

fj:Qj_)P;r i 1Qy =P,



each of which is a diffeomorphism on the boundary. Using the Alexander trick (remember that there is no
essential difference between the smooth and PL categories in dimensison 2), we can assume that fi+ and f;”
are diffeomorphisms.



