More on Mapping Class Groups (Lecture 37)

May 11, 2009

Let us begin with a recap of the previous lecture. Let ¥ be a compact, connected, oriented surface
with x(2) < 0, and let T denote the fundamental group of I'. We let Out(I') = Aut(I")/T be the outer
automorphism group of I'. For any collection of embedded oriented loops Cy,...,C, C TI', choose a base
point x; on each Cj, and let 7; denote the homotopy class of C; in m (X, z;) >~ I'. We let Outc, .. ¢, (¥)

denote the group of tuples (¢, ¢1,...,d,) where ¢ € Out(I'), and each ¢; is an automorphism of m (X, z;)
which represents ¢ and fixes «;. The map

(¢a¢1a"'7¢n)ﬁ>¢

is a group homomorphism from Outc, .. ¢, (X), whose image is the collection of outer automorphisms of I’
which fix the conjugacy classes of 7; and whose kernel is the product of centralizers [], .., Z(v;) Provided
that each C; is essential (that is, not nullhomotopic), these centralizers coincide with the cyclic group 2
generated by ~;, and are canonically isomorphic to Z.

In the special case where the collection C; consist of all boundary components of ¥, we will denote
Outc,,....c, (T') by Outg(T). If the collection C; includes all boundary components together with one addi-
tional embedded loop C, we denote this group instead by Outs c(T).

Fix now an embedded loop C in ¥ containing a point z, and let v € 71 (X, ) ~ I be the class represented
by C. We let Outsy(T') denote the subgroup of Outy(T) consisting of outer automorphisms which fix the
conjugacy class of . Let Diffg(X) be the group of diffeomorphisms of ¥ which fix the boundary pointwise,
Diff3(3, C) the subgroup consisting of diffeomorphisms which restrict to an orientation-preserving diffeo-
morphism of C, and Diffy ¢(X) the subgroup consisting of diffeomorphisms which fix C' pointwise. In the
last lecture, we saw that there is a homotopy pullback diagram

Diffy,¢(3) — Diff (5, C) — Diff5(¥)

I l |
Outy,c(I') —— Out}(I'") —— Outy(I).
Moreover, Diff ¢(X) is homotopy equivalent to Diffg(X'), where ¥’ is the surface obtained by cutting ¥

along C. Our ultimate goal is to prove that the vertical maps are homotopy equivalences. For the moment,
we will be content to prove the following weaker statement:

(*) In the above diagram, each of the vertical maps has a contractible kernel.

As we explained last time, the proof proceeds by induction. Since each square in the above diagram is
a homotopy pullback, the kernels of the vertical maps are all homotopy equivalent. Consequently, it will
suffice to show that the kernel of ¢ is contractible. There are two cases to consider:

(1) The curve C is nonseparating. In this case, the surface ¥’ is connected. Let ¢’ : Diff5(X) — Outy(3X')
be the canonical map. Since ¥’ is simpler than C, the inductive hypothesis guarantees that the kernel



ker(¢’) is contractible; in particular, the kernel of ¢’ is the identity component of Diff5(X’). Since
Diff ¢(X) is homotopy equivalent to Diff9(¥’), its identity component is also contractible. To prove
that ker(y) is contractible, it suffices to show that ker(v) coincides with the identity component of
Diff ¢(X). Suppose otherwise: then there exists a diffeomorphism f € Diffy (X) which is not isotopic
to the identity, such that f induces the identity map from 71 (X, x;) to itself, whenever x; is a base point
on C or some boundary component of ¥. Let f’ be the induced diffeomorphism of ¥/. Then f is not
isotopic to the identity, so the image of f/ € Outg(X’) is nontrivial. It follows that for some base point
y on some boundary component of ¥/, f’ induces a nontrivial automorphism f, : m (X', y) — m1 (X', y).
We have a commutative diagram

m (X, y) —m(25,y)

F )

T (X, y) —=m(2,y).

Since f, is the identity, we deduce that the horizontal maps are not injective.

On the other hand, we can compute 713 from 7%’ using a generalization of van Kampen’s theorem.
Note that ¥ is obtained from X’ by gluing along a pair of boundary components By and By (having
image C in X). Consider the following more general situation: let X’ be a well-behaved connected
topological space with a pair of disjoint, well-behaved connected closed subsets By and Bj, and let
X be the space obtained by gluing By to B; along some homeomorphism h. The map h induces an
isomorphism w1 By ~ 7 B1; let us denote this common fundamental group by H. Let ~ be a path in
X'’ from a base point p of By to the base point h(p) of By, and take p to be a base point of X’. Then
the inclusions of By and B; into X’ induce group homomorphisms 7,5 : H — G = 11 X’, where j is
defined by carrying a loop « to v~ o a0 ~y. Note that v maps to a closed loop in X, and therefore
determines a class t € m; X. We have the following classical result:

Theorem 1. The group m1 X is generated by G = m X' together with the element g, subject only to
the relations ti(h) = j(h)t for h € H.

In the special case where the maps ¢ and j are injective, we say that m; X is obtained from G by
an HNN-extension. In this case, we can describe m X very explicitly. Choose a set Cy of left coset
representatives of i(H) in G (including the identity) and set C_ of left coset representatives of j(H)
in G. Then every element of 71 X can be written uniquely in the form

gt"t et ey .t ey

where the n; are nonnegative integers, ¢; € Cy if n; > 0, ¢; € C_ if n; < 0, and ¢; is nonzero unless
n = k. The image of G corresponds to those elements for which £ = 0. This description shows that G
injects into m X.

In our case, the subsets By and Bj are inclusions of boundary components in the surface 3. We
therefore have m1 By ~ 1By ~ Z, and the inclusion maps 7, j : Z — w1 %’ are both injective. It follows
that 1% — m X is injective, as desired.

The curve C is separating. In this case, we can write ¥’ as a disjoint union of two connected components
3 U X1, each of which contains C as a boundary curve. Let I'y and I'; be their fundamental groups.
We have a map ¢’ : Diff (X') — Outy(I'o) x Outs(I';). The inductive hypothesis guarantees that
ker(¢)’) is contractible; in particular, it is the identity component of Diff5(X’). We conclude again that
the identity component of Diffs «(X) is contractible. To complete the proof, it will suffice to show
that this identity component coincides with ker(¢). Assume otherwise; then we have a diffeomorphism
f € Diffy ¢(X) which is not isotopic to the identity, but induces the identity on (X, ;) for any base
point z; in Y or in C. Let f’ be the induced diffeomorphism of ¥’. Since f’ does not lie in the
boundary component of Diff 5(X'), its image is nontrivial in either Outy(I'g) or Outs(I'y). It follows



that there exists a point y in some boundary component of ¥’ such that f, : m (¥, y) — m (¥, y) is
nontrivial. Since f, is trivial on 71 (X%, y), we deduce that 71 (X', y) — 71(3,y) is not injective. We will
obtain a contradiction.

By van Kampen’s theorem (in its usual form), the fundamental group 713 can be recovered as an
amalgamated product 7120 *r, ¢ m121 = I'g xz I';. Since the maps mC — m;%; are injective, this
free product admits an explicit description: if we chose sets of left coset representatives Cy and C}
(including the identity) for Z in T'g and I'y, then every element of 713 can be written uniquely in the
form
gcpcica ... Ck,

where g € Z and the ¢; are nontrivial elements of Cy [ Cy which alternate between Cy and C;. The
uniqueness guarantees that the maps I'g — I' < I'; are injective.

The inductive mechanism above reduces the proof of the main theorem to the case where ¥ is the
simplest possible hyperbolic surface: namely, a pair of pants. In this case, we let Diff (X, 9) be the group of
diffeomorphisms of ¥ which restrict to orientation preserving diffeomorphisms of each boundary component.
We have a fiber sequence

Diff} (¥) — Diff(%,9) — Diff *(S)?.
(Here the notation Diff T indicates that we are restricting our attention to orientation-preserving diffeomor-
phisms.) Since Diff 7 (S') is homotopy equivalent to the circle group, the fiber sequence gives rise to another
fiber sequence in the homotopy category.

Z? — Diff} (X) — Diff(%, 9).
This sequence fits into a commutative diagram

73 — Diff} (%) —— Diff(%, 0)

l iw lwo
73 —= Outy(2) —= Out(%).

It follows that the right square is a homotopy pullback, so that ker(t) is homotopy equivalent to ker(tyg),
which is a union of connected components of Diff (X, 9). To complete the proof in this case, it will suffice to
show that Diff (3, 9) is contractible.

Let S? denote the 2-sphere, so that ¥ can be identified with the surface obtained from S? by performing
a real blow-up at three points {z,y,z}. Let Diff " (S2, {z,, 2}) be the group of diffeomorphisms of S? that
fix the points z, y, and 2. Then the construction of the real blow-up induces a map Diff*(S?, {z,y,2}) —
Diff(X,9). This map is a homotopy equivalence: it has a homotopy inverse (in the PL category, say)
given by coning off the boundary components. Consequently, it suffices to prove that Diff " (5%, {z,y, 2}) is
contractible.

Let X denote the open subset of (52)3 consisting of triples of distinct points of S2. We have a homotopy
fiber sequence

Diff* (82, {z,y, 2}) — Diff '($?) % X.
Consequently, we are reduced to proving that the map a is a homotopy equivalence. In a previous lecture,
we saw that the group PGLy(C) of biholomorphisms of S? ~ CP! is homotopy equivalent to Diff*(S2). Tt
therefore suffices to show that the action of PGL2(C) on X determines a homotopy equivalence PGLy(C) —
X. But this map is actually a homeomorphism: for every triple of distinct points z,y,z € CP', there is a
unique linear fractional transformation which carries (z,y, z) to (0,1, 00).

To complete our understanding of mapping class groups, we would also like to know that the map
¥ : Diff 5(X) — Outy(T) is surjective. This assertion can formulated in group theoretic terms: for example,
it implies that if " is a surface group given as an amalgamated free product I'gxzI'1, then any automorphism
of I which is trivial on the subgroup Z arises from automorphisms of I’y and I';. However, we will give a
more direct geometric argument in the next lecture.



