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Let us begin with a recap of the previous lecture. Let Σ be a compact, connected, oriented surface
with χ(Σ) < 0, and let Γ denote the fundamental group of Γ. We let Out(Γ) = Aut(Γ)/Γ be the outer
automorphism group of Γ. For any collection of embedded oriented loops C1, . . . , Cn ⊆ Γ, choose a base
point xi on each Ci, and let γi denote the homotopy class of Ci in π1(Σ, xi) ' Γ. We let OutC1,...,Cn

(Σ)
denote the group of tuples (φ, φ1, . . . , φn) where φ ∈ Out(Γ), and each φi is an automorphism of π1(Σ, xi)
which represents φ and fixes γi. The map

(φ, φ1, . . . , φn)→ φ

is a group homomorphism from OutC1,...,Cn
(Σ), whose image is the collection of outer automorphisms of Γ

which fix the conjugacy classes of γi and whose kernel is the product of centralizers
∏

1≤i≤n Z(γi) Provided
that each Ci is essential (that is, not nullhomotopic), these centralizers coincide with the cyclic group γZ

i

generated by γi, and are canonically isomorphic to Z.
In the special case where the collection Ci consist of all boundary components of Σ, we will denote

OutC1,...,Cn(Γ) by Out∂(Γ). If the collection Ci includes all boundary components together with one addi-
tional embedded loop C, we denote this group instead by Out∂,C(Γ).

Fix now an embedded loop C in Σ containing a point x, and let γ ∈ π1(Σ, x) ' Γ be the class represented
by C. We let Out′∂(Γ) denote the subgroup of Out∂(Γ) consisting of outer automorphisms which fix the
conjugacy class of γ. Let Diff∂(Σ) be the group of diffeomorphisms of Σ which fix the boundary pointwise,
Diff∂(Σ, C) the subgroup consisting of diffeomorphisms which restrict to an orientation-preserving diffeo-
morphism of C, and Diff∂,C(Σ) the subgroup consisting of diffeomorphisms which fix C pointwise. In the
last lecture, we saw that there is a homotopy pullback diagram

Diff∂,C(Σ) //

ψ

��

Diff∂(Σ, C) //

��

Diff∂(Σ)

��
Out∂,C(Γ) // Out′∂(Γ) // Out∂(Γ).

Moreover, Diff∂,C(Σ) is homotopy equivalent to Diff∂(Σ′), where Σ′ is the surface obtained by cutting Σ
along C. Our ultimate goal is to prove that the vertical maps are homotopy equivalences. For the moment,
we will be content to prove the following weaker statement:

(∗) In the above diagram, each of the vertical maps has a contractible kernel.

As we explained last time, the proof proceeds by induction. Since each square in the above diagram is
a homotopy pullback, the kernels of the vertical maps are all homotopy equivalent. Consequently, it will
suffice to show that the kernel of ψ is contractible. There are two cases to consider:

(1) The curve C is nonseparating. In this case, the surface Σ′ is connected. Let ψ′ : Diff∂(Σ′)→ Out∂(Σ′)
be the canonical map. Since Σ′ is simpler than C, the inductive hypothesis guarantees that the kernel
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ker(ψ′) is contractible; in particular, the kernel of ψ′ is the identity component of Diff∂(Σ′). Since
Diff∂,C(Σ) is homotopy equivalent to Diff∂(Σ′), its identity component is also contractible. To prove
that ker(ψ) is contractible, it suffices to show that ker(ψ) coincides with the identity component of
Diff∂,C(Σ). Suppose otherwise: then there exists a diffeomorphism f ∈ Diff∂,C(Σ) which is not isotopic
to the identity, such that f induces the identity map from π1(Σ, xi) to itself, whenever xi is a base point
on C or some boundary component of Σ. Let f ′ be the induced diffeomorphism of Σ′. Then f ′ is not
isotopic to the identity, so the image of f ′ ∈ Out∂(Σ′) is nontrivial. It follows that for some base point
y on some boundary component of Σ′, f ′ induces a nontrivial automorphism f ′∗ : π1(Σ′, y)→ π1(Σ′, y).
We have a commutative diagram

π1(Σ′, y)

f ′∗
��

// π1(Σ, y)

f∗

��
π1(Σ′, y) // π1(Σ, y).

Since f∗ is the identity, we deduce that the horizontal maps are not injective.

On the other hand, we can compute π1Σ from π1Σ′ using a generalization of van Kampen’s theorem.
Note that Σ is obtained from Σ′ by gluing along a pair of boundary components B0 and B1 (having
image C in Σ). Consider the following more general situation: let X ′ be a well-behaved connected
topological space with a pair of disjoint, well-behaved connected closed subsets B0 and B1, and let
X be the space obtained by gluing B0 to B1 along some homeomorphism h. The map h induces an
isomorphism π1B0 ' π1B1; let us denote this common fundamental group by H. Let γ be a path in
X ′ from a base point p of B0 to the base point h(p) of B1, and take p to be a base point of X ′. Then
the inclusions of B0 and B1 into X ′ induce group homomorphisms i, j : H → G = π1X

′, where j is
defined by carrying a loop α to γ−1 ◦ α ◦ γ. Note that γ maps to a closed loop in X, and therefore
determines a class t ∈ π1X. We have the following classical result:

Theorem 1. The group π1X is generated by G = π1X
′ together with the element g, subject only to

the relations ti(h) = j(h)t for h ∈ H.

In the special case where the maps i and j are injective, we say that π1X is obtained from G by
an HNN-extension. In this case, we can describe π1X very explicitly. Choose a set C+ of left coset
representatives of i(H) in G (including the identity) and set C− of left coset representatives of j(H)
in G. Then every element of π1X can be written uniquely in the form

gtn1c1t
n2c2 . . . t

nkck

where the ni are nonnegative integers, ci ∈ C+ if ni > 0, ci ∈ C− if ni < 0, and ci is nonzero unless
n = k. The image of G corresponds to those elements for which k = 0. This description shows that G
injects into π1X.

In our case, the subsets B0 and B1 are inclusions of boundary components in the surface Σ′. We
therefore have π1B0 ' π1B1 ' Z, and the inclusion maps i, j : Z→ π1Σ′ are both injective. It follows
that π1Σ′ → π1Σ is injective, as desired.

(2) The curve C is separating. In this case, we can write Σ′ as a disjoint union of two connected components
Σ0 ∪ Σ1, each of which contains C as a boundary curve. Let Γ0 and Γ1 be their fundamental groups.
We have a map ψ′ : Diff∂(Σ′) → Out∂(Γ0) × Out∂(Γ1). The inductive hypothesis guarantees that
ker(ψ′) is contractible; in particular, it is the identity component of Diff∂(Σ′). We conclude again that
the identity component of Diff∂,C(Σ) is contractible. To complete the proof, it will suffice to show
that this identity component coincides with ker(ψ). Assume otherwise; then we have a diffeomorphism
f ∈ Diff∂ C(Σ) which is not isotopic to the identity, but induces the identity on π1(Σ, xi) for any base
point xi in ∂ Σ or in C. Let f ′ be the induced diffeomorphism of Σ′. Since f ′ does not lie in the
boundary component of Diff∂(Σ′), its image is nontrivial in either Out∂(Γ0) or Out∂(Γ1). It follows
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that there exists a point y in some boundary component of Σ′ such that f ′∗ : π1(Σ′, y) → π1(Σ′, y) is
nontrivial. Since f∗ is trivial on π1(Σ, y), we deduce that π1(Σ′, y)→ π1(Σ, y) is not injective. We will
obtain a contradiction.
By van Kampen’s theorem (in its usual form), the fundamental group π1Σ can be recovered as an
amalgamated product π1Σ0 ?π1C π1Σ1 = Γ0 ?Z Γ1. Since the maps π1C → π1Σi are injective, this
free product admits an explicit description: if we chose sets of left coset representatives C0 and C1

(including the identity) for Z in Γ0 and Γ1, then every element of π1Σ can be written uniquely in the
form

gc0c1c2 . . . ck,

where g ∈ Z and the ci are nontrivial elements of C0

∐
C1 which alternate between C0 and C1. The

uniqueness guarantees that the maps Γ0 → Γ← Γ1 are injective.

The inductive mechanism above reduces the proof of the main theorem to the case where Σ is the
simplest possible hyperbolic surface: namely, a pair of pants. In this case, we let Diff(Σ, ∂) be the group of
diffeomorphisms of Σ which restrict to orientation preserving diffeomorphisms of each boundary component.
We have a fiber sequence

Diff+
∂ (Σ)→ Diff(Σ, ∂)→ Diff+(S1)3.

(Here the notation Diff+ indicates that we are restricting our attention to orientation-preserving diffeomor-
phisms.) Since Diff+(S1) is homotopy equivalent to the circle group, the fiber sequence gives rise to another
fiber sequence in the homotopy category.

Z3 → Diff+
∂ (Σ)→ Diff(Σ, ∂).

This sequence fits into a commutative diagram

Z3 //

��

Diff+
∂ (Σ) //

ψ

��

Diff(Σ, ∂)

ψ0

��
Z3 // Out∂(Σ) // Out(Σ).

It follows that the right square is a homotopy pullback, so that ker(ψ) is homotopy equivalent to ker(ψ0),
which is a union of connected components of Diff(Σ, ∂). To complete the proof in this case, it will suffice to
show that Diff(Σ, ∂) is contractible.

Let S2 denote the 2-sphere, so that Σ can be identified with the surface obtained from S2 by performing
a real blow-up at three points {x, y, z}. Let Diff+(S2, {x, y, z}) be the group of diffeomorphisms of S2 that
fix the points x, y, and z. Then the construction of the real blow-up induces a map Diff+(S2, {x, y, z}) →
Diff(Σ, ∂). This map is a homotopy equivalence: it has a homotopy inverse (in the PL category, say)
given by coning off the boundary components. Consequently, it suffices to prove that Diff+(S2, {x, y, z}) is
contractible.

Let X denote the open subset of (S2)3 consisting of triples of distinct points of S2. We have a homotopy
fiber sequence

Diff+(S2, {x, y, z})→ Diff+(S2) a→ X.

Consequently, we are reduced to proving that the map a is a homotopy equivalence. In a previous lecture,
we saw that the group PGL2(C) of biholomorphisms of S2 ' CP1 is homotopy equivalent to Diff+(S2). It
therefore suffices to show that the action of PGL2(C) on X determines a homotopy equivalence PGL2(C)→
X. But this map is actually a homeomorphism: for every triple of distinct points x, y, z ∈ CP1, there is a
unique linear fractional transformation which carries (x, y, z) to (0, 1,∞).

To complete our understanding of mapping class groups, we would also like to know that the map
ψ : Diff∂(Σ)→ Out∂(Γ) is surjective. This assertion can formulated in group theoretic terms: for example,
it implies that if Γ is a surface group given as an amalgamated free product Γ0 ?Z Γ1, then any automorphism
of Γ which is trivial on the subgroup Z arises from automorphisms of Γ0 and Γ1. However, we will give a
more direct geometric argument in the next lecture.

3


