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Let X be a path connected topological space and let f : S1 → X be a map. Then f determines a
conjugacy class [f ] in the fundamental group π1X. Our goal in this lecture is to show any nonzero conjugacy
class is represented by an essentially canonical map f in the case where X is a hyperbolic surface.

Lemma 1. Assume that X is a compact Riemannian manifold. Then any conjugacy class γ ∈ π1X can be
represented by a closed geodesic f : S1 → X.

Proof. Endow the circle S1 with its standard Riemannian metric, normalized so that the circle has total
length 1. Define the Lipschitz constant L(f) of a loop f to be the supremum of

d(f(x), f(y))
d(x, y)

. This supremum may be infinite: however, for a smooth path f it is finite (and coincides with maximum
length of the derivative f ′ on S1). Let c be the infimum of the set {L(f)}, where f varies over all repre-
sentatives of γ. We will show that this infimum is achieved: that is, there exists a loop f with L(f) = c.
Then f must be a smooth geodesic (of speed c) if it fails to be a geodesic near some point t, we can obtain
a shorter loop representing γ by modifying f near t (and then changing our parametrization).

To prove that c is achieved, choose a sequence of loops {fi}i≥0 such that the real numbers L(fi) converge
to c from above. Passing to a subsequence, we may assume that L(fi) < c + 1. Choose a countable
dense subset {tj} ⊆ S1. Since X is compact, we can pass to a subsequence and thereby assume that
f0(t0), f1(t0), . . . converges to some point x0 ∈ X. Similarly, we can pass to a subsequence of {f1, f2, . . .}
and thereby guarantee that the sequence f1(t1), f2(t1), . . . converges to a point x1 ∈ X. Proceeding in this
way, we obtain a refinement of the original sequence such that {fi(tj)}i≥0 converges to some xj ∈ X. We
define a new map f : {tj} → X by the formula f(tj) = xj . We claim that f extends to a continuous map
S1 → X having L(f) ≤ c. To prove this, it suffices to show that

d(f(ti), f(tj)) ≤ cd(ti, tj)

for each pair of integers i 6= j. This is clear:

d(f(ti), f(tj)) ≤ d(f(ti), fn(ti)) + d(f(tj), fn(tj) + d(fn(ti), fn(tj)) ≤ ε+ L(fn)d(ti, tj)

where ε can be made arbitrarily small (by choosing n large enough) and L(fn) can be made arbitrarily close
to c.

Choose ε > 0 small enough that every pair of points of X within a distance ε are connected by a unique
geodesic. For n � 0, we have d(f(t), fn(t)) < ε for all t, so that f and fn can be connected by a geodesic
homotopy; it follows that f is homotopic to fn and therefore represents the free homotopy class γ.

Let us now suppose that X is a hyperbolic surface, so that X can be represented as H/Γ where H is
the upper half place {x + iy : y > 0} and Γ is a group which acts on H by hyperbolic isometries. Then
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Γ ' π1X, and we can identify Γ with a subgroup of the group P SL2(R) of linear fractional transformations
of the form

z 7→ az + b

cz + d
.

It is traditional to decompose elements of P SL2(R) into three types:

(i) An element A ∈ SL2(R) is called elliptic if | tr(A)| < 2. In this case, the eigenvalues of A are unit
complex numbers (and complex conjugate to one another); the transformation A itself is given by
z 7→ cos(θ)z−sin(θ)

sin(θ)z+cos(θ) for some real number θ. Elliptic elements never appear in the discrete groups Γ under
consideration, because they always have fixed points in the upper half plane (the above transformation
has the complex number z = i as a fixed point).

(ii) An element A ∈ SL2(R) is called parabolic if | tr(A)| = 2; in this case, the eigenvalues of A are both ±1
but A is generally not semisimple: it is conjugate to a transformation of the form z 7→ z + t for some
real number t. Nontrivial transformations of this kind cannot appear in Γ when the quotient X = H/Γ
is compact. For suppose otherwise: then, by Lemma 1, we would have a geodesic loop f : S1 → X
representing the conjugacy class of a parabolic transformation z 7→ z + t. Then f lifts to a geodesic
path f̃ with the translation-invariance property f̃(x+1) = f̃(t). There is no geodesic in the upper half
plane with this property: the unique geodesic passing through f̃(0) and f̃(0) + t does not pass through
f̃(0) + 2t.

This argument does not apply if the quotient H/Γ is noncompact. In fact, a finite volume quotient
H/Γ is compact if and only if Γ contains no parabolic elements: in fact, there is a bijection between
cusps of H/Γ and conjugacy classes of maximal parabolic subgroups of Γ.

(iii) An element A ∈ SL2(R) is called hyperbolic if | tr(A)| > 2 (modifying A by a sign, we may assume that
tr(A) > 2). In this case, A has distinct real eigenvalues λ, 1

λ for some λ > 1. Then A is conjugate
to the transformation z 7→ λz. In this case, there is a unique geodesic path f̃ : R → H satisfying
f̃(t+ 1) = Af̃(t): namely, the path given by the formula f̃(t) = λti. This path descends to a geodesic
loop f : S1 → H/Γ representing the conjugacy class of ±A in Γ ' π1H/Γ.

The above analysis proves the following result:

Theorem 2. Let X = H/Γ be a compact hyperbolic surface. Then every nontrivial element γ of π1X ' Γ ⊆
P SL2(R) is hyperbolic. Moreover, the conjugacy class of γ can be represented by a geodesic loop f : S1 → X
which is unique up to reparametrization.

In other words, if X is a hyperbolic surface, then every conjugacy class in π1X has a canonical represen-
tative. We now show that these representatives are well-behaved:

Theorem 3. Let X be a hyperbolic surface, and suppose we are given distinct nontrivial conjugacy classes
γ1, . . . , γn ∈ π1X. The following conditions are equivalent:

(1) The conjugacy classes γi can be represented by simple closed curves Ci ⊆ X such that Ci ∩ Cj = ∅ for
i 6= j.

(2) The canonical geodesic representatives for γ1, . . . , γn are simple closed curves Ci ⊆ X such that Ci ∩
CJ = ∅ for i 6= j.

Proof. It is clear that (2)⇒ (1). Suppose that (1) is satisfied. Let {fi : S1 → X}1≤i≤n be a parametrizations
of the curves Ci which satisfy condition of (1), and let {gi : S1 → X}1≤i≤n be the geodesic representatives
of the conjugacy classes γi. We wish to prove that each gi is a simple curve, and that gi(S1) ∩ gj(S1) = ∅
for i 6= j. We will prove the latter; the former follows by the same argument.

Choose a lifting of gi to a geodesic path g̃i : R → D, where D is the unit disk. If gi(S1) ∩ gj(S1) 6= ∅,
then we can lift gj to a geodesic path g̃j : R → D such that g̃i(R) and g̃j(R) intersect. Let a, b ∈ ∂ D be
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the endpoints of g̃i on the circle at infinity, and let a′, b′ be the endpoints of g̃j . Note that g̃i(R) and g̃j(R)
intersect if and only if the sets {a, b} and {a′, b′} are disjoint, and the points a′ and b′ belong to different
components of ∂ D − {a, b}.

Since fi and gi represent the same conjugacy class in π1X, there is a homotopy h from fi to gi. Lifting
this homotopy to the universal cover, we get a lift f̃i : R → D of fi and a homotopy from f̃i to g̃i. This
homotopy moves points by a bounded amount with respect to the hyperbolic metric on D. Consequently,
it moves points which are close to the boundary ∂ D by very small amounts with respect to the Euclidean
metric on the closure of D. It follows that f̃i has the same endpoints a and b as g̃i.

A similar argument shows that we can lift fj to a path f̃j : R → D having endpoints a′, b′ ∈ ∂ D. If a′

and b′ belong to different components of ∂ D−{a, b}, then f̃i(R) and f̃j(R) must have a point of intersection
x̃ ∈ D. The image of x̃ is a point x ∈ fi(S1) ∩ fj(S1) ⊆ X, contradicting our assumptions.
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