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May 1, 2009

In this lecture, we will (belatedly) discuss the classification of 2-manifolds, which we have frequently used
in our discussion of 3-manifolds. We begin with the oriented case.

Theorem 1. Let Σ be a connected compact oriented surface. Then Σ can be obtained as a connected sum
T#T# · · ·#T of g copies of the torus T , for some g ≥ 0.

The integer g is called the genus of the surface Σ. It is a topological invariant of Σ: a simple calculation
shows that χ(Σ) = 2− 2g.

The proof will require a few preliminaries.

Lemma 2. Let Σ be a connected compact surface. Then χ(Σ) ≤ 2, and equality holds if and only if Σ is a
2-sphere.

Proof. We have χ(Σ) = b0 − b1 + b2, where bi denotes the ith Betti number of Σ. Since Σ is connected, we
have b0 = 1, and b2 is either 1 or 0 depending on whether Σ is orientable or nonorientable. It follows that

χ(Σ) =

{
2− b1 if Σ is orientable
1− b1 if Σ is nonorientable.

This proves the inequality. If equality holds, then Σ must be orientable, and therefore admits a complex
structure. As we explained in a previous lecture, a Riemann surface with χ(Σ) = 2 must be biholomorphic
to the Riemann sphere, and in particular is a topological sphere.

The following can be regarded as a baby version of the loop theorem:

Lemma 3. Let Σ be a connected surface and let N ⊂ π1Σ be a proper normal subgroup. Then there is an
embedded loop f : S1 ↪→ Σ such that [f ] /∈ N .

Proof. Since N is proper, we can choose a closed loop f : S1 → Σ such that [f ] (which is well-defined up to
conjugacy) does not belong to N . Without loss of generality, we may assume that f is in general position.
Then f is an immersion with a finite number k of double points. We will assume that f has been chosen
minimally. If k = 0, then f is an embedding and we are done. Otherwise, there exist x, y ∈ S1 with x 6= y
but f(x) = f(y). The points x and y partition S1 into two intervals I0 and I1. The restrictions of f to I0
and I1 give two other loops f0, f1 : S1 → Σ. Since each of these loops has a smaller number of double points,
the minimality of k guarantees that [f0], [f1] ∈ N . We now conclude by observing that [f ] belongs to the
normal subgroup of π1Σ generated by [f0] and [f1], and therefore also belongs to N , which contradicts our
assumption.

We now prove Theorem 1. We proceed by descending induction on χ(Σ). If χ(Σ) ≥ 2, then Lemma
2 implies that χ(Σ) = 2 and Σ is a 2-sphere. We may therefore assume that χ(Σ) = 2 − b1 < 2, so that
H1(Σ; Z) 6= 0. It follows that the commutator subgroup [π1Σ, π1Σ] is a proper subgroup of π1Σ. Using
Lemma 3, we can choose an embedded loop f : S1 ↪→ Σ which represents a nontrivial class in H1(Σ; Z). It
follows that f must be nonseparating, so that the surface Σ′ obtained by cutting Σ along f is connected.
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Let Σ′′ be the closed surface obtained by capping off the boundary circles of Σ′. A simple calculation shows
that

χ(Σ′′) = 2 + χ(Σ′) = 2 + χ(Σ).

By the inductive hypothesis, Σ′′ can be realized as a connected sum T#T# . . .#T .
The surface Σ can be obtained from Σ′′ by removing small disks Dx and Dy around two points x, y ∈ Σ′′

(to obtain Σ′), and then gluing the boundary of these disks together. Without loss of generality, we may
assume that x and y are close to one another, so that Dx and Dy are contained in a larger disk D. Let K0 be
the surface with boundary obtained from Σ′′ by removing the interior of D, and let K1 be the surface obtained
from D by removing the interiors of Dx and Dy and identifying their boundary. Then Σ = K0

∐
S1 K1, so

we can identify Σ with the connected sum of two surfaces K̂0 and K̂1 obtained by capping off the boundary
circles of K0 and K1. We note that K̂0 ' Σ′′, and a simple calculation shows that K̂ = T (if we like, we can
take this to be a definition of the 2-manifold T ). We then obtain

Σ ' Σ′′#T ' T#T# . . .#T

as desired.
We now treat the case of a nonorientable 2-manifold.

Theorem 4. Let Σ be a closed connected nonorientable 2-manifold. Then Σ can be obtained as a connected
sum RP 2 ' RP 2# . . .#RP 2 for some k ≥ 1.

Remark 5. In the situation of Theorem 4, the integer k is uniquely determined: a simple calculation of
Euler characteristics shows that χ(Σ) = 2− k.

Warning 6. A priori, the connected sum X#Y of two surfaces X and Y is not well-defined: it depends
on a choice of identification of the boundary circles of punctured copies of X and Y . This issue did not
arise in the statement of Theorem 1, because in the orientable case there is a unique choice of identification
which allows us to orient X#Y in a manner compatible with given orientations of X and Y (which we were
implicitly using). It also does not matter in the case of Theorem 4, for a different reason: there exists an
diffeomorphism of RP 2 which fixes a point x and induces an orientation reversing automorphism of the
tangent space at x. Namely, we observe that RP 2 = (R3−{0})/R× carries an action of the orthogonal
group O(3): any reflection in O(3) will do the job.

We now prove Theorem 4. The proof proceeds by descending induction on χ(Σ) (which is at most 1, by
virtue of Lemma 2). Since Σ is nonorientable, the 1st Stiefel-Whitney class w1 ∈ H1(Σ; Z/2Z) induces a
nontrivial map π1Σ→ Z/2Z. Let N be the kernel of this map, so that N is a proper normal subgroup of π1Σ.
Using Lemma 3, we obtain an embedded loop f : S1 → Σ such that [f ] /∈ N . Consequently, the restriction
of w1 to S1 is nontrivial: this means that the normal bundle to the embedding S1 ↪→ Σ is nontrivial, so
that S1 is a one-sided loop in Σ. Let K be a tubular neighborhood of S1: then K is a Mobius band, whose
boundary is another circle C. Let Σ′ be the surface obtained from Σ by removing the interior of K, and let
Σ̂′ and K̂ be the closed surfaces obtained by capping off the boundary circles of K and Σ′. Then K̂ = RP 2

(if you like, you can take this to be the definition of RP 2, and we have Σ ' Σ̂′#RP 2. A simple calculation
with Euler characteristics shows that χ(Σ) = χ(Σ̂′) + χ(RP 2)− 2 = χ(Σ̂′)− 1.

There are now two cases to consider. If Σ̂′ is nonorientable, then the inductive hypothesis implies that
Σ̂′ is a connected sum of finitely many copies of RP 2: it then follows that Σ is a connected sum of finitely
many copies of RP 2. If Σ̂′ is orientable, then we apply Theorem 1 to deduce that Σ̂′ is a connected sum of
g copies of the torus T , for some g ≥ 0. If g = 0, then Σ̂′ ' S2, so that Σ ' S2#RP 2 ' RP 2. The case
g > 0 is handled through repeated application of the following Lemma:

Lemma 7. There is a diffeomorphism

RP 2#RP 2#RP 2 ' T#RP 2.
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Proof. Choose a pair of embedded circles C,C ′ ⊂ T which meet transversely in one point x. Let us identify
T#RP 2 with the 2-manifold obtained from T by removing a small disk D around x, and gluing on a Mobius
band K along the boundary ∂ D. Then C − C ∩ D and C ′ − C ′ ∩ D can be extended to nonintersecting
embedded loops C and C

′
on T#RP 2, both of which are one-sided. Using the preceding arguments, we

deduce that there exists a decomposition

T#RP 2 ' (RP 2#RP 2)#Σ,

where Σ is the surface obtained by removing tubular neighborhoods of C and C
′

and capping of their
boundary components. A simple calculation shows that χ(Σ) = 1, so that Σ must be nonorientable: we
therefore have Σ ' RP 2#Σ′. Then χ(Σ′) = 2, so that Σ′ is a 2-sphere (Lemma 2). It follows that Σ ' RP 2

so that
T#RP 2 ' RP 2#RP 2#RP 2

as desired.

Remark 8. In the next few lectures, we will need to understand not only closed 2-manifolds, but also 2-
manifolds with boundary. However, it is easy to extend the above classification: the boundary of a (compact)
2-manifold Σ is a compact 1-manifold, hence a union of finitely many circles. If we let Σ′ be the 2-manifold
obtained by capping off these boundary circles, then Σ′ is diffeomorphic to a 2-manifold of the form

T#T# . . .#T RP 2#RP 2# . . .#RP 2,

and Σ is obtained from Σ′ by removing small disks around finitely many points.

Remark 9. Let Σ be a compact connected 2-manifold (possibly nonorientable or with boundary). The
properties of Σ depend strongly on the sign of the Euler characteristic χ(Σ). It is therefore convenient to
list the possibilities for Σ when χ is nonnegative:

• If χ(Σ) = 2, then Σ ' S2 (Lemma 2).

• If χ(Σ) = 1, then either Σ ' RP 2 or Σ ' D2.

• If χ(Σ) = 0, there are several possibilities. If Σ is orientable, then either Σ ' T or Σ is a twice-
punctured sphere (an annulus S1 × [0, 1]). Each of these possibilties has a nonorientable analogue: if
Σ is nonorientable and has boundary, then it is diffeomorphic to a punctured copy of RP 2: this is a
Mobius band, given by a nonorientable [0, 1]-bundle over S1. If Σ is nonorientable and closed, then it
is diffeomorphic to the Klein bottle RP 2#RP 2. This 2-manifold can be viewed as obtained by gluing
together two Mobius bands along their boundary, which realizes it as a nonorientable S1-bundle over
S1 (alternatively, one can start with the surface Σ which is a nonorientable S1-bundle over S1; then
χ(Σ) = 0 so that Theorem 4 guarantees a diffeomorphism Σ ' RP 2#RP 2.

• If χ < 0, then we are in the “generic case”.
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