Incompressible Surfaces (Lecture 32)

April 29, 2009

In this lecture, we will describe some applications of the loop theorem to the study of a 3-manifold M.
For simplicity, we will restrict our attention to the case where M is connected, closed and oriented, though
the ideas below generalize to the case of nonorientable manifolds with boundary.

Definition 1. An embedded two-sided surface ¥ C M is compressible if one of the following conditions
holds:

(1) There exists an embedded loop L C ¥ which does not bound an embedded disk in 3, but does bound
an embedded disk D in M such that DNYX =0 D.

(2) The surface X is a 2-sphere which bounds a disk in M.
If ¥ is not compressible, then we say that X is incompressible.

Lemma 2. Let X C M be a 2-sided surface of genus g > 0. Then ¥ is incompressible if and only if the map
w2 — mM is injective.

Proof. The “if” direction is clear: if m 3 — 71 M is injective, then any loop in ¥ which bounds a disk in M
(embedded or not) must be nullhomotopic in 3, and therefore bound a disk.

Conversely, suppose that X is incompressible. If m3 — 7 M is not injective, then there exists a
nontrivial loop L in ¥ which is the boundary restriction of a map f : D?> — M. We may assume without
loss of generality that the map f is transverse to ¥, so that f~' is a union of k circles for k > 0. We will
assume that f has been chosen to minimize k.

Suppose first that & = 1, so that f~!¥ = 0 D2. Let M’ be the 3-manifold with boundary obtained by
cutting M along X. Then f lifts to a map f’: D? — M’. Applying the loop theorem, we deduce that there
exists an embedding f’ : (D?,S1) — (M’,0 M') representing a nontrivial homotopy class on the boundary.

Then the composite map D? 1, M' — M is an embedded disk in M, contradicting our assumption that X
is incompressible.

If £ > 1, then f~'3 includes a circle C in the interior of D?2. We may assume that C' is chosen innermost,
so that it bounds a disk D’ with f~!X N D’ = C. If f|C is a nontrivial loop in ¥, then we can replace f by
f|D and thereby contradict the minimality of k. Otherwise, we may assume that f|C is nullhomotopic, so
that there exists another map fo : D? — M which agrees with f outside of D’ and carries D’ into 3. Moving
fo by a small homotopy on D’, we obtain a new map f; : D?> — M which agrees with f on the boundary
and such that f; 'S consists of k — 1 circles, again contradicting the minimality of k. O

Our next result guarantees the existence of a good supply of incompressible surfaces:

Proposition 3. Let M be a closed connected oriented 3-manifold. Let X be a topological space containing
an open subset homeomorphic to Y x (—1,1), for some simply connected space Y (which we identify with
Y x {0}), and let f : M — X be a map. Assume that moY ~ 0, and that wo vanishes for each component of
X — Y. Then there exists a map f' : M — X satisfying the following conditions:



(1) The maps f and f' are homotopic when restricted to M — F, where F is a finite set (in fact, we can
choose F' to consist of only one point). In particular, f and f' induce the same map myM — mX.

(2) The map [’ is transverse to Y, and 7YY is a union of incompressible surfaces of M.

Proof. Adjusting f by a small homotopy, we may assume that f is transverse to Y, so that f~'Y is a union
of finitely many two-sided surfaces ¥; in M, each having genus g;. We will assume that these surfaces have
been chosen to minimize c¢(f) =, 3%. If each of these surfaces is incompressible, we are done. Otherwise,
we will explain how to modify the map f to obtain a new map f’ satisfying (1) with ¢(f’) < ¢(f); this will
contradict the minimality of f.

Let ¥ be a compressible component of f~'Y. If ¥ is a 2-sphere, then ¥ bounds a disk D. Since mY
is equal to zero, there exists a map fy : M — X which agrees with f outside of D, and carries D into
Y (moreover, this map is homotopic to f after removing a single point of D). Adjusting fo by a small
homotopy, we obtain a map f’ : M — X such that /'Y = f~'Y — %, so that c(f’) < c(f) as desired.

Suppose now that X is not a 2-sphere, so there exists a 2-disk D C M such that DNY = 9D is a
nontrivial loop in ¥. Choose a tubular neighborhood D x [—1,1] C M such that (D x [-1,1])N M C X. We
may assume that f(z,¢) € Y x [0,1] for (z,t) € D x [-1,1] near 9 D x [—1,1].

We define a new map f’ : M — X as follows:

(i) We let f’ coincide with f outside of the interior of D x [—1,1] (so that f’ will be homotopic to f after
removing a point of D x [—1,1]).

(i4) SinceY is simply connected, the loop f| & D x 3 extends to amap g4 : Dx 4 — Y;welet f/|Dx 3 =g,.
Define f'|D x 771 similarly.

(#i1) Using the assumption that each component of X —Y has vanishing 75, we can extend f’ over D x [%, 1]

and over D x [—1, 5], carrying the complement of (D x {£1})U (9D x [-1,1]) into X — Y.

(iv) Using the assumption that mY = 0, we can extend f’ over D x [, 1] so that f/(D x [3}, 3] C Y.

Adjust f’ by a small homotopy which pushes f/(D x (5t,1) into Y x (—1,0). Then the inverse image
f’_lY can be identified with the surface obtained from f~'Y by doing surgery along the loop L : & D. There
are two possibilities:

(a) The curve L is separating in X. Since L is nontrivial, we deduce that L surgery along L cuts ¥ into
two surfaces of positive genus g and ¢’, where ¥ has genus g + ¢’. Since 39 + 39 < 3919 | we deduce

that c(f’) < e(f).

(b) The curve L is nonseparating in ¥. Then surgery along L replaces ¥ by a curve having smaller genus.
Since 3971 < 39 we deduce that c(f') < c(f).

O

We now describe some applications of Proposition 3.

Corollary 4. Let M be a closed connected oriented 3-manifold, and suppose that Hi(M;Q) # 0. Then M
contains a two-sided incompressible surface.

Proof. If H{(M; Q) # 0, then H'(M;Z) # 0. Choose a nontrivial cohomology class represented by a map
f: M — S'. Applying Proposition 3, we may suppose that the inverse image of a point 2 € S! is a union
of incompressible surfaces in M. If f~!(z) = (), then f is nullhomotopic. Otherwise, some component of
f~{x} is incompressible. O



Remark 5. If M is irreducible, then Corollary 4 must produce an incompressible surface ¥ of positive
genus. Let M’ be the 3-manifold with boundary obtained by cutting M along ¥. Since not every boundary
component of M’ is a sphere, we must have H; (M’; Q) # 0. Applying an analogue of Corollary 4 for 3-
manifolds with boundary, we can produce another incompressible surface in M’. By repeatedly cutting M
along incompressible surfaces in this way, it is possible to obtain a very good understanding of the 3-manifold
M.

Corollary 6. Let M be a closed oriented connected 3-manifold and suppose that myM ~ G x H is a free
product of nontrivial groups G and H. Then M can be written as a connected sum My# Ms where m My ~ G
and T My ~ H.

Proof. Let BG and BH denote classifying spaces for G and H, and let X be the space BG ]_[{_1} [—1,1] ]_[{1} BH.
Then X is a classifying space for G x H, so there exists a map f : M — X which is the identity on m M.
Applying Proposition 3, we may suppose that f is transverse to {0} € X and that f~'{0} is a union of
incompressible surfaces ¥ of M. If any such surface 3 has positive genus, then the map

mu —-mM~GxH

is injective (Lemma 2) which is a contradiction. Thus f~*{0} is a union of k spheres, for some k. Since G
and H are both nontrivial, we must have £ > 0. If £ = 1, we obtain the desired connect sum decomposition
of M. We will assume that f has been chosen to as to minimize k.

Assume that k > 1, and let « be a path in M joining two components of f~1{0}. Then f(«) is a loop in
X. Since myM ~ 71X, we can adjust the path « by composing with a loop in M to guarantee that f(«a) is
nullhomotopic. Adjusting o by a homotopy, we may assume that « : [0,1] — M is transverse to f~*{0}, so
that o can be written as a composition

O=Q10...0Q,

where o; lies in f~}(BG [I;—1;[=1,0]) for i odd (without loss of generality) and a; lies in F71([0,1] [, BH)
for i even. We assume that m has been chosen as small as possible. Since [f(a)] vanishes, the structure of
free products of groups guarantees that some f([o;]) must vanish. If ; connects two different components
of f~1{0}, then we can replace a by «a; and reduce to the case m = 1. If a; connects two points in the same
component X of f~1M, then we can replace o; by a path o/ in ¥. Adjusting the composite path

/
a1 0...0Q;—100; O0;410...00n,

by a small homotopy, obtain a new path having fewer intersections with f~1{0}, again contradicting the
minimality of M.

We may therefore assume that « is a path intersecting f~1{0} only in its endpoints. Let K ~ D? x [0,1]
be a tubular neighborhood of the image of a so that K N f~1{0} = D? x {0,1}. Using the assumption that
f(a) is nullhomotopic, we can construct a new map f’ : M — X which agrees with f outside of K (and
therefore induces the same isomorphism m M — 71 X) and carries D’ x [0,1] into {0}, where D’ is a slightly
smaller disk in D?. Adjusting f’ by a small homotopy, we obtain a map such that f’fl{O} is obtained from
f71{0} by a surgery along the 0-sphere «| 3([0, 1]): this surgery reduces the number of connected components
which contradicts the minimality of k. O



