The Sphere Theorem: Part 2 (Lecture 31)

April 27, 2009

In this lecture, we will complete the proof of the sphere theorem.

Let us recall the situation. We are given an oriented, connected 3-manifold M and a m; M-invariant
proper subgroup N C moM. Our goal is to prove that there exists an embedded 2-sphere S C M whose
homotopy class does not belong to N.

Since N # my M, there exists a map f : S? — M whose homotopy class does not belong to N. We may
assume that f is in general position and (as we saw in the last lecture) an immersion. We will suppose that
f has been chosen so as to minimize the number ¢(f) of triple points of f.

In the last lecture, we argued as follows:

(1) If the map f has a simple double curve, then we can modify f so as to obtain a new map f’ (whose
homotopy class again does not belong to N) which either has fewer triple points (¢(f’) < t(f)) or
the same number of triple points and fewer double curves. Since ¢(f) is minimal, f’ must have fewer
double curves. Applying this procedure repeatedly, we can reduce to the case where f does not have
any double curves.

(2) There exists a 3-manifold with boundary M (namely, the 3-manifold V;, at the top of the tower that
we constructed in the last lecture) and an immersion g : M — M with the following properties:

(i) The map f lifts to a map f: S2 — M.
(ii) The 3-manifold M is a regular neighborhood of f(52).

(#47) The fundamental group m M is finite. As we saw last time, this guarantees that the universal

cover of M is a punctured sphere, so that 7r2/]\/v[ is generated (as a 771/1\2 -module) by its boundary
components.

(iv) The map f is not an embedding (otherwise we were able to produce a simple double curve of f.

Let E(f) denote the singular locus of the map f Condition (iv) guarantees that Z(f) is nonempty. Let
X be a small neighborhood of 3(f) in M. Since f is in general position, no point of M has more than 3
preimages under f. It follows that ¢ must be injective on X(f). Shrinking X, we may assume that ¢ is

injective on X. Let T denote the closure of f(S?%)— X.

Let z € X(f). Since f is a general position map, ¢(x) has at most 3 preimages under f. At least two of
these are preimages of x under f. There are two possibilities:

(a) The inverse image f~'(q(z)) = f~'(z). Then g(z) does not intersect ¢(T), so we can choose a
neighborhood V,; of  such that ¢(V,) Ng(T) = 0.

(b) The inverse image f~1(g(z)) consists of f~!(z) together with one additional point s € S2. Let y = f(s).
Since ¢ is injective on X, we must have y ¢ X, so that y € T. Since ¢ is an immersion, there exists a
neighborhood U of y in T' on which ¢ is injective. Then g(x) does not intersect ¢(7" — U), so there is a
neighborhood of V,; of = such that ¢(V;) Ng(T) C q(U).



Let Xy be a regular neigborhood of Z(f) which is contained in the open set |J V. By construction, if
x € X then there is at most one element y € f(SQ) such that x # y but ¢(z) = q(y).

Let X1 C X, be a slightly smaller regular neighborhood of $(f). The map f is an embedding outside of
Xq; let Sq,..., S, be the connected components of its image. Then ]?(5'2) has a regular neighborhood of the
form X1 U (S x [~1,1])U... U (Sp x [~1,1]). Shrinking M if necessary, we may assume that it coincides
with this regular nelghborhood

Let N denote the i inverse image of IV in 772M _Since N does not contain the homotopy class of f , it is
a proper subgroup 771M invariant subgroup of 7r2M Using (#i1), we deduce that N does not contain the
homotopy class of some boundary component S of M. Let i M be the inclusion of this boundary
component. Then the image of f’ is contained in

X1U (S x{-L1HU...uU(Sm x {-1,1}).
Claim 1. For each index 1 < i < m, the image of f' cannot intersect both S; x {—1} and S; x {1}.

Proof. Otherwise, there exists a simple arc a on f/(S?) joining points (x,—1) and (y, 1), where z,y € S;.
Choose a path joining y to z in S;, which determines a path g from (y,1) to (z,—1) in S; x [-1,1]. The
composition a o 3 is a simple loop which meets f(SQ) transversely at exactly one point (belonging to .S;).
It follows that a o 3 represents a nontorsion homology class in Hl(ﬂ ,Z), which contradicts our assumption
that 7T1]\7 is finite. O

Using Claim 1, we can modify the map f’ by an isotopy to obtain an embedding f” : S? — M whose
image is contained in Xo U S; U Sy U...US,,. By construction, the homotopy class of f” does not belong
to N, so the homotopy class of g o ' does not belong to N. We will obtain a contradiction by showing that
t(q o f”) has fewer triple points than f”.

Let x € M be a triple point for g o f”. Since f” is an embedding, we must have three distinct points
x1, 2,23 € f(S?) such that q(x1) = q(x2) = q(x3) = x. Note that f”/(S?) C TU Xy. Since q is injective on
X0, at most one element of {1, x2, x3} belongs to Xo. However, if z; € X, then there is at most one element
y € T distinct from z; such that ¢(y) = g(z;). It follows that none of the elements x;, z2, and z3 belong to
Xg. Thus 21, 20,23 € T C f(SQ), so that z is also a triple point of f. This proves that ¢(q o f) < ¢(f). To
prove that the equality is strict, it suffices to show that f has at least one triple point z such that ¢=1{z} is
not contained in 7. For this, it suffices to show that the map fhas a triple point. Assume otherwise. Then
the singular locus ¥(f) is a 1-dimensional submanifold of M. This singular locus is nonempty (by (iv)), and
therefore contains a circle C'. This circle is a simple double curve of f, so that ¢(C) is a simple double curve
of f, which contradicts (1).



