
The Sphere Theorem: Part 1 (Lecture 30)

April 23, 2009

In this lecture, we will begin to prove the following result:

Theorem 1 (The Sphere Theorem). Let M be an oriented connected 3-manifold and let N ⊂ π2M be a
π1M -invariant proper subgroup. Then there exists an embedded 2-sphere S ↪→M whose homotopy class does
not belong to N . In particular, M is not irreducible.

Since N is a proper subgroup of π2M , we can choose a map f : S2 →M representing a homotopy class
which does not belong to N . We will follow a basic strategy similar to that of the loop theorem: we will
repeatedly modify the map f until it becomes an embedding. To begin with, we may assume that f is in
general position. The proof now proceeds in several stages:

(1) We may reduce to the case where f is an immersion.

To see this, we construct a tower similar to that appearing in our proof of the loop theorem. Namely, we
define a sequence of maps fn : S2 →Mn by induction as follows:

• Set M0 = M , and f0 = f .

• Assume that we have constructed fn : S2 → Mn. Let Un be a regular neighborhood of fn(S2) in Mn

(a compact 3-manifold with boundary) If π1fn(S2) ' π1Un is finite, then we terminate the process.
Otherwise, let Mn+1 be the universal cover of Un, and let fn+1 : S2 → Mn+1 be any map lifting fn

(such a map exists, since S2 is simply connected).

As in the proof of the loop theorem, this process must eventually terminate at some stage n, so that
π1Un is finite. It follows that H1(Un,Q) = 0. By Poincare duality, we have H2(Un, ∂ Un; Q) = 0. Using the
long exact sequence

H2(Un, ∂ Un; Q)→ H1(∂ Un; Q)→ H1(Un; Q)

we deduce that H1(∂ Un; Q) = 0, so that the boundary ∂ Un (which is an orientable 2-manifold) is a union
of finitely many spheres. Let W be the universal cover of ∂ Un and let Ŵ be the the 3-manifold obtained
by capping off its boundary spheres. Since π1Un is finite, W is compact, so that Ŵ ' S3 by the Poincare
conjecture. It follows that W is obtained from S3 by removing finitely many open disks, so that π2W is
generated by the classes represented by its boundary spheres. We deduce that π2Un ' π2W is generated (as
a π1Un-module) by the classes represented by boundary spheres.

Let N ′ be the inverse image of N in π2Un. Since the homotopy class of fn does not belong to N ′, we
deduce that N ′ is a proper π1Un-invariant subgroup of π2Un. It follows that N ′ does not contain the class
of some embedding g : S2 ↪→ ∂ Un ⊆ Un. Let f ′ denote the composite map S2 g→ Un → M . Since g is an
embedding, f ′ is an immersion. Replacing f by f ′, we can reduce to the case where f is itself an immersion.

Modifying f slightly, we may assume also that f is in general position: it may therefore have both double
and triple points (but no branch points). Let Σ(f) denote the singular locus of f (the subset of M consisting
of those points x ∈M for which f−1(x) contains at least two points). Then Σ(f) is a 1-dimensional subset
of M , which is a submanifold except at a set of isolated points (the triple points of f). The inverse image
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f−1Σ(f) is a 1-dimensional submanifold of S2, which can be written as the union of finitely many circles.
We will call the images of these circles under f double curves of M .

We now proceed by induction on the pair (t(f), d(f)), where t(f) denotes the number of triple points of
f and d(f) the number of double curves of f . We order these pairs lexicographically: we consider another
general position map f ′ : S2 →M to be simpler than f if t(f ′) < t(f) or if t(f ′) = t(f) and d(f ′) < d(f).

(2) Suppose that f has a simple double curve (i.e., there is a component of f−1Σf which embeds into M).
Then we can replace f by a simpler map f ′ : S2 → M which again represents a class in π2M not
belonging to N .

To see this, let C ⊆ M be a simple double curve of M . Then f−1C consists of a few isolated points
together with a double cover C̃ of C. Since M and S2 are oriented, the argument of the previous lecture
shows that C̃ must be disconnected, consisting of two circles C1, C2 ⊆ S2. These circles bound disjoint
disks D1, D2 ⊆ S2. Let h : D1 → D2 be a homeomorphism extending the identification C1 ' C ' C2. Let
f ′0 : S2 →M be the map given by the formula

f ′0(x) =


f(hx) if x ∈ D1

f(h−1x) if x ∈ D2

f(x) otherwise,

and let f ′1 : D1

∐
C D2 →M be the map given by amalgamating f |D1 and f |D2. Then:

(i) After replacing f ′0 by a small perturbation, we can arrange that f ′0 and f ′1 are general position maps,
both simpler than the original map f (in both cases, we have either eliminated all triple points along
the double curve C, or left the number of triple points constant while eliminating at least one double
curve).

(ii) The homotopy class of f in π2M belongs to the π1M -invariant subgroup generated by the homotopy
classes of f ′0 and f ′1. Consequently, either [f ′0] or [f ′1] will not belong to the subgroup N .

This completes the proof of (2). Unfortunately, this is not yet enough to prove the sphere theorem,
because the double curves of the map f will generally intersect themselves.

Lemma 2. Let q : M̃ →M be a local homeomorphism of 3-manifolds, let f : S2 →M be a general position
map without branch points, and let f̃ : S2 → M̃ be a lift of f . If f̃ has a simple double curve C, then q(C)
is a simple double curve of f .

Proof. It suffices to show that q|C is injective. If not, then there exist points x, y ∈ C such that q(x) =
q(y) = z ∈M . Then f−1M = f̃−1{x} ∪ f̃−1{y} has at least four points, contradicting our assumption that
f is in general position.

We now try to exploit Lemma 2 using the tower

Un ⊆Mn → Un−1 → · · · →M0 = M

constructed in (1) (for our given map f).

(3) Suppose that fn : S2 →M is an embedding. Then f has a simple double curve, and we may conclude
by applying (2).

To prove (3), we first consider the group H1(Un−1; Z). If this group is finite, then the reasoning of
step (1) implies that every boundary component of Un−1 is a sphere, so that the map π1Un−1 → π1Mn−1

is injective by van Kampen’s theorem. Since Mn−1 is simply connected, we conclude that Un−1 is also
simply connected, which contradicts our choice of n. Thus H1(Un−1,Z) is infinite. Let T denote the torsion
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subgroup of H1(Un−1,Z), and let T̃ denote the inverse image of T in π1Un−1; note that T̃ 6= π1Un−1. Since
the inclusion fn−1(S2) ⊆ Un−1 is a homotopy equivalence, the inverse image of fn−1(S2) in Mn is connected.
This inverse image consists of all translates of the 2-sphere S = fn(S2) by elements of π1Un−1. It follows
that the intersection

(
⋃
g∈eT

g(S)) ∩ (
⋃

g′ /∈eT
g′(S))

is nonempty, so that there exists an element τ ∈ π1Un−1 − T̃ such that τ(S) ∩ S 6= ∅.
By construction, the group element τ has infinite order. Let k be the largest integer such that τk(S)∩S 6=

∅, let Z denote the cyclic subgroup of π1Un−1 generated by τk, and let M̃ = Mn/Z. We have a local
homeomorphism M̃ → M . Consequently, by Lemma 2, it will suffice to show that the composite map
f̃ : S2 fn→Mn → M̃ has a simple double curve.

Since the map f is in general position, the spheres τk(S) and S must meet transversely in Mn. Let C
be a connected component of their intersection. We claim that the image of C is a simple double curve of
f̃ . To prove this, it suffices to show that the map C → M̃ is injective. Suppose otherwise: then there exist
points x, y ∈ C such that x = τnky for some integer n ≥ 0. Then x ∈ S ∩ τ (n+1)kS 6= ∅, contradicting our
choice of k. This completes the proof of (3).

It remains to treat the case where fn : S2 →M fails to be an embedding. We will return to this case in
the next lecture.
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