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In the last lecture, we reduced the proof of the Loop Theorem to the following special case:

Theorem 1. Let M be a connected 3-manifold with boundary, let X be a connected 2-manifold with boundary
contained in ∂M , and let N be a normal subgroup of π1X. Suppose we are given a map g′ : (D2, S1) →
(M,X) with the following properties:

(1) The map g′ is an immersion without triple points (consequently, the singular locus of g′ consists of
closed double loops and double arcs which join double points belonging to X).

(2) The restriction g′|S1 represents a class in π1X which does not belong to N .

Then there exists an embedding g : (D2, S1)→ (M,X) which satisfies (2).

Our goal in this lecture is to prove Theorem 1. Let X ⊆ D2 denote the locus consisting of points where
g′ is not an embedding. Since g′ has only double points, X is a submanifold having codimension 1 in D2: it
therefore consists of finitely many closed curves and finitely many arcs whose endpoints lie in the boundary
of the disk. Moreover, for every point x ∈ X there is a unique point y 6= x such that f(x) = f(y). The
construction x 7→ y is a fixed-point-free involution on X; let Y denote the quotient of X by this involution
(it is a smooth submanifold of M).

Let k = k(g′) be the number of connected components of Y . We will prove Theorem 1 using induction
on k. If k = 0, then the map g′ is an embedding and we can take g′ = g. Assume therefore that k > 0, so
that X is nonempty. Our goal is to replace g′ by another map g′′ with k(g′′) < k(g′) (in other words, g′′ has
fewer double curves than g′).

First suppose that Y contains a closed curve C ' S1. Let C̃ denote the inverse image of C in X. There
are two possibilities to consider:

(1) The curve C̃ is connected. Without loss of generality, we may assume that C̃ is a circle of radius 1
2 in

D2, and that the involution on X restricts to the antipodal map on C̃. We can then define a new map
g′′ : D2 →M by the formula

g′′(x) =

{
g(x) if |x| ≥ 1

2

g(−x) if |x| ≤ 1
2 .

Modifying g′′ by a small perturbation, we can arrange that g′′ is injective along C̃ (and elsewhere has
the same singularities as g′). Since g′′ and g′ have the same restriction to ∂ D2, and that k(g′′) < k(g′),
we can conclude by the inductive hypothesis.

Remark 2. The analogue of case (1) will prove more troublesome in our proof of the sphere theorem.
Consequently, it is worth noting now that (1) is impossible if the manifold M is orientable. More precisely,
we have the following:

(∗) Let Σ be an oriented surface, M an oriented 3-manifold, and f : Σ → M a general position map.
Suppose that C ⊆M is a closed double curve of f . Then the inverse image C̃ ⊆ Σ of C is disconnected.

1



For suppose that C̃ is connected. Since C is a circle, it has trivial tangent bundle; let v be a nowhere
vanishing vector field on C̃. Since Σ is orientable, the normal bundle N to C̃ in Σ must also be trivial, so it
has a nonzero section w over C̃. Let σ denote the involution on C̃. At every point x ∈ C̃, the vectors vf(x),
df(wx), and df(wσ(x)) form an ordered basis for the tangent space TM,f(x), which depends continuously on
x. However, if we replace x by σ(x), then this ordered basis changes by an odd permutation. It follows that
the orientation obstruction w1(M) ∈ H1(M ; Z/2Z) is nontrivial on [C] ∈ H1(M ; Z/2Z).

Assume now that C̃ has two connected components C0 and C1. These components bound disks D0 and
D1. We next consider the special case:

(2) One of the disks Di contains the other. Without loss of generality, we may assume that D0 contains
D1. Choose a homeomorphism h : D0 → D1 extending the homeomorphism C0 ' C ' C1. We can
then define a new map g′′ : D2 →M by the formula

g′′(x) =

{
g′(x) if x /∈ D0

g′(hx) if x ∈ D0.

It is easy to see that k(g′′) < k(g′), and g′′ has the same restriction to the boundary as g′; we may
therefore conclude by the inductive hypothesis.

There is one other case to consider:

(3) Suppose that the disks D0 and D1 are disjoint. Choose a homeomorphism h : D0 → D1 extending the
homeomorphism C0 ' C ' C1 of their boundaries. We define a new map g′′ : D2 →M by the formula

g′′(x) =


g′(hx) if x ∈ D0

g′(h−1x) if x ∈ D1

g′(x) otherwise.

Modifying g′′ by a small perturbation, we again have k(g′′) < k(g′), while g′′ agrees with g′ on ∂ D2,
so we can conclude by induction.

Now suppose that g′ has no closed double curves. Since k(g′) > 0, g′ must have a double arc C ⊆ M ,
which is doubly covered by a pair of arcs C0, C1 ⊆ D2. We will identify D2 with the product [0, 1]× [−1, 1].
Without loss of generality, we may assume that C0 = 1

3 × [0, 1] and that C1 = 2
3 × [−1, 1]. We have an

identification C0 ' C ' C1, which we may assume without loss of generality is given by ( 1
3 , t) 7→ ( 2

3 ,±t).
We define two new maps g′′0 , g

′′
1 : D2 →M by the following formulae:

g′′0 (s, t) =

{
g′( 2

3s, t) if s ≤ 1
2

g′( 2
3s+ 1

3 ,±t) if s ≥ 1
2

g′′1 (s, t) =


g′(s, t) if s ≤ 1

3

g′( 2
3 − s,±t) if 1

3 ≤ s ≤
2
3

g′(s, t) if 2
3 ≤ s ≤ 1.

Note that k(g′′0 ) < k(g′) (since we have eliminated at least one double arc), and we will have k(g′′1 ) < k(g′)
after replacing g′′1 by a small perturbation to ensure that it is in general position. To complete the inductive
step, it will suffice to show that either g′′0 or g′′1 represents a class not belonging to the normal subgroup
N ⊆ π1X. To prove this, it suffices to observe that [g′|S1] belongs to the normal subgroup of π1X generated
by [g′′0 |S1] and [g′′1 |S1] (this is clear if we draw some pictures which are not included in the notes).
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