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April 15, 2009

In the last lecture, we introduced the notion of an irreducible 3-manifold: a 3-manifold M is said to be
irreducible if every embedded 2-sphere in M bounds a disk (on exactly one side). Our stated motivation was
that embedded 2-spheres were good candidates to represent nontrivial classes in π2M . Our first goal in this
lecture is to show that this is indeed the case.

Proposition 1. Let M be a 3-manifold, and let S ↪→M be an embedded 2-sphere. The following conditions
are equivalent:

(1) The sphere S bounds a disk in M .

(2) The sphere S represents a trivial class in π2M .

Remark 2. The statement of Proposition 1 is a little sloppy: the homotopy group π2M is really only well-
defined after we have chosen a base point on M . If M is connected, then the groups π2(X,x) and π2(X, y)
can be related by choosing a path from x to y, but the identification depends on this choice of path via
the action of π1M on π2M . This means that the class of S in π2M is only well-defined up to the action of
π1M ; however, the condition that this class vanishes is invariant under the action of π1M (the vanishing is
equivalent to the requirement that S ↪→M is homotopic to a constant map, ignoring the base points).

Proof. (In what follows, we do not assume that M is compact.) It is clear that if S bounds a disk, then S
is nullhomotopic. Conversely, suppose that S is nullhomotopic. Suppose first that M is simply connected.
Since [S] = 0 ∈ H2(M ; Z/2Z), the 2-sphere S is separating (though the converse can fail in the noncompact
setting); we can therefore write M = M0

∐
S2 M1 where M0 and M1 are 3-manifolds with 2-sphere boundary.

We have an exact sequence
H2(S)

j→ H2(M0)⊕H2(M1)→ H2(M)

(all homology computed with Z/2Z coefficients). Since [S] vanishes in H2(M), we deduce that the class
([S], 0) lies in the image of j: in other words, either ([S], 0) or (0, [S]) vanishes. Assume the former, and let
M̂0 be the 3-manifold obtained from M0 by capping off the boundary sphere. We have an exact sequence

H3(M̂0)→ H2(S2) i→ H2(D3)⊕H2(M0).

Since the map i is not injective, we deduce that H3(M̂0) is nonzero. By Poincare duality (the simple
connectivity of M̂0 guarantees orientability), we deduce that H0

c(M̂0) does not vanish, so that M̂0 is a
compact, simply connected 3-manifold. By the Poincare conjecture, M̂0 is a 3-sphere, so that M0 is a disk
bounded by S.

Suppose now that M is not simply connected; we still have M = M0

∐
S M1 as above. Let M̃ be a

universal cover of M , and π : M̃ → M the projection map. Since S is simply connected, we can lift S to a
2-sphere S̃ in M̃ . Since π2M ' π2M̃ , the sphere S̃ is nullhomotopic and therefore bounds a disk. This disk
might contain other preimages of S: however, by adjusting our choice of S̃ we can arrange that S̃ contains
a disk D which intersects the inverse image of π−1S only in S̃. It follows that π(D) ⊆ M0 or πD ⊆ M1;
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without loss of generality we may assume the former. The map π induces a local homeomorphism D →M0.
Since D is compact, this local homeomorphism is proper, and is therefore a finite-sheeted covering space.
Since the Euler characteristic of D is 1, this covering space has 1-sheet so that M0 ' D is a disk bounded
by the sphere S, as required.

It follows that if a compact 3-manifold M is not irreducible, then π2M does not vanish. We might ask
if the converse is true: if π2M is nonvanishing, does M fail to be irreducible? The answer is not obvious:
the nonvanishing of π2M guarantees a nontrivial homotopy class of map i : S2 → M , but the map i need
not be an embedding. However, it turns out that the existence of nontrivial homotopy class guarantees the
existence of an embedded 2-sphere with a nontrivial homotopy class, at least when M is oriented.

Theorem 3 (The Sphere Theorem). Let M be an oriented 3-manifold, and suppose that π2M is nontrivial.
Then there exists an embedded 2-sphere S ↪→ M representing a nontrivial class in π2M . More generally,
given any π1M -invariant normal subgroup N ⊂ π2M , there exists an embedded 2-sphere S ↪→M representing
an element of π2M which does not belong to N .

We will prove this theorem over the course of the next few lectures. The idea is to begin with an arbitrary
map i : S →M representing a homotopy class which does not belong to N , and to adjust this map to make
it an embedding. The same techniques will be used to prove the following companion to the sphere theorem:

Theorem 4 (The Loop Theorem). Let M be a 3-manifold with boundary and let X be a boundary component
of M . If N is a normal subgroup of π1X which does not contain the kernel of the map π1X → π1M , then
there exists an embedding (D2, S1) → (M,X) such that the loop S1 ↪→ X represents a class in π1X which
does not belong to N .

Remark 5. The hypothesis of orientability in the sphere theorem is essential. If P denotes the 2-dimensional
real projective space, then P × S1 is a nonorientable 3-manifold with π2(P × S1) ' Z, yet P × S1 does
not contain any nontrivial embedded 2-spheres (it contains many immersed 2-spheres, given by the double
covering S2 → P ).

We now begin to pave the way for our proofs of the loop and sphere theorems by discussing the notion
of a general position map from a surface S into a 3-manifold M . We will treat this notion informally and
not give a precise definition: roughly speaking, a map i : S → M is in general position if the behavior of i
satisfies all of the conditions we like that can be guaranteed by moving the map i by a small amount. In
particular, any “singularities” of the map i can be assumed to appear in the expected codimension, which
means they do not appear at all if the expected codimension is ≥ 3 (in S) or ≥ 4 (in M):

Assume therefore that we are given a smooth map i : S →M . How can this map fail to be an embedding?
There are essentially two things that can go wrong:

(i) The map i can be fail to be an immersion at a point s ∈ S. In other words, the derivative Di can
fail to have rank 2 at s. The derivative Dis takes values in the 6-dimensional space of linear maps
TS,s → TM,i(s). A linear map of rank 1 is determined by specifying a 1-dimensional quotient Q of TS,s

(the set of such choices forms a 1-dimensional space), a 1-dimensional subspace Q′ of TM,i(s) (where
we have a 2-dimensional space of choices), and a linear isomorphism Q ' Q′ (for which we have 1-
dimensional space of choices); in total, we find that the space of maps having rank 1 is a manifold of
dimension 1+2+1 = 4. Including the zero map does not increase the dimension: we conclude that Dis
should be expected to have rank ≤ 2 in on a subset of S having codimension 2. Since S is a surface,
the map i should fail to be an immersion at a discrete set of points of S. The images of these points
in M are called branch points of the map i.

(ii) The map i can fail to be injective, so that i(x) = i(y) for x 6= y. Since i(x) and i(y) take values in the
3-manifold M , we should expect the relation i(x) = i(y) to hold with codimension 3 among (x, y) ∈ S2.
We will say that x ∈M is a double point of i if i−1{x} has cardinality 2. If i is in general position, then
we expect the set of double points to be a smooth submanifold of codimension 1 in M . We can also
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arrange that this set does not intersect the set of branch points (although, as we will see in a moment,
every branch point lies in the closure of the set of double points).

(iii) The map i can fail to be injective more drastically: we can have i(x1) = i(x2) = . . . = i(xn). This
behavior is to be expected in codimension 3(n − 1) in the space Sn of dimension 2n. If n > 3, then
3(n − 1) > 2n so that a generic map i will have not exhibit this behavior. If n = 3, then we expect
this to happen for a discrete subset of S3: in other words, we expect an isolated set of points x ∈ M
where i−1{x} has cardinality 3. We will call such points triple points of the map i.

What does the map i look like near a branch point? If we work in the piecewise linear category, then the
local structure of a PL map i : D2 → D3 is given by taking the cone over some PL map i0 : S1 → S2. If i0
is an embedding, then so is i, and we do not have any branching. We may therefore assume that i0 fails to
be an embedding and therefore has some double points. It follows that every branch point of i lies at the
endpoint of a curve of double points of i. (For a generic choice of i, the curve i0 : S1 → S2 will have only a
single self-intersection so that this double curve is unique. However, we will not need to know this.)
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