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In the last lecture, we introduced the notion of a prime 3-manifold, and showed that every 3-manifold
can be obtained as a connected sum of prime factors. In this lecture, we will prove a theorem of Milnor
which asserts that this decomposition is unique. We will assume for convenience that all of our 3-manifolds
are connected and oriented.

Note that a prime 3-manifold need not have π2M ' ∗. For example, if M = S2 × S1, then π2M does
not vanish, but M is prime (since π1M cannot be factored nontrivially as a free product). However, this is
essentially the only counterexample.

Definition 1. Let M be a 3-manifold which is not a 3-sphere. We will say that M Is irreducible if every
embedded 2-sphere S2 ↪→M bounds a disk on one side or the other.

Remark 2. We say that an embedding S2 ↪→ M is separating if M − S2 is disconnected. Note that S2 is
separating if and only if its fundamental class [S2] ∈ H2(M ; Z/2Z) vanishes.

By definition, M 6= S3 is prime if and only if every separating 2-sphere of M bounds a 3-disk. Conse-
quently, every irreducible 3-manifold is prime. The product S2 × S1 is an example of a prime 3-manifold
which is not irreducible, but this example is unique (provided we stick to oriented 3-manifolds):

Proposition 3. Let M be a compact, connected, oriented 3-manifold. Suppose that M contains a nonsepa-
rating 2-sphere S. Then M can be written as a connect sum M1#(S2 × S1). In particular, if M is prime,
then M ' S2 × S1.

Proof. Since S is nonseparating, there exists a loop L in M which intersects the 2-sphere S transversely in
exactly one point. Let M ′2 denote the union of a tubular neighborhood of L and a tubular neighborhood of
S. Then the boundary of M ′2 is equivalent to a connect sum of 2-spheres, so that ∂M ′2 ' S2. Let M2 be the
3-manifold obtained by capping off this boundary 2-sphere with a disk. Then M2 has the structure of an
S2-bundle over the loop L. Since M is orientable, this 2-sphere bundle must be trivial, so that M2 ' S2×S1

and cutting along ∂M ′2 gives the desired connect sum decomposition of M .

We now turn to the uniqueness of prime factorizations. Suppose that M is a compact connected 3-
manifold and we have two prime decompositions

M1#M2# · · ·#Mn 'M 'M ′1# · · ·#M ′m.

We will show that m = n and that the diffeomorphism types of the prime factors agree up to a permutation.
Our first step is to give a criterion which allows us to intrinsically detect if S2 × S1 appears as a factor on
one side. Note that if M 'M ′#(S2 × S1), then M contains a nonseparating 2-sphere. Conversely:

Proposition 4. Let M be a compact, connected, oriented 3-manifold with a prime decomposition M '
M1# . . .#Mn, and suppose that each Mi is irreducible. Then M contains no nonseparating 2-sphere.
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Proof. It will suffice to show that if M and N are 3-manifolds containing no nonseparating 2-spheres,
then M#N likewise contains no nonseparating 2-sphere. Assume for a contradiction M#N contains a
nonseparating 2-sphere S, and let T denote the separating 2-sphere given by the connect sum decomposition
of M#N . Without loss of generality we may assume that S and T meet transversely. Let k be the number of
connected components of S∩T , and assume that S has been chosen to minimize k. If k = 0, then without loss
of generality we have S ⊆M . Since [S] is nontrivial in H2(M#N), it is nontrivial in H2(M −D3) ' H2(M)
so that S is a separating 2-sphere of M , contrary to our assumption.

We may therefore assume that k > 0. Regard the intersection S ∩ T as a union of finitely many circles
in T ' S2. Choose an “innermost” circle C ⊆ S ∩ T , so that C bounds a disk D in T whose interior does
not intersect S. This circle also cuts S into 2-disks E+ and E−. Let S+ = D ∪E+ and S− = D ∪E+. Then
[S] = [S+] + [S−] 6= 0, so that either S+ or S− is also a nonseparating 2-sphere in M#N . Without loss of
generality S+ is nonseparating. Moving S+ by a small isotopy, we can arrange that it intersects T in fewer
than k components, contradicting the minimality of k.

Returning to our decomposition

M1#M2# · · ·#Mn 'M 'M ′1# · · ·#M ′m,

we deduce that if some Mi ' S2 × S1, then also some M ′j ' S2 × S1. Reordering the decompositions,
we may assume i = j = 1. We would like to assert that the complementary summands M2# . . .#Mn and
M ′2# . . .#M ′m are diffeomorphic. These complementary summands can be obtained by cutting M along
nonseparating 2-spheres in the factors S2×S1, and then capping of the resulting boundary spheres by disks.
To prove that the resulting manifold is unique up to diffeomorphism, it suffices to prove the following:

Proposition 5. Let M be a compact, connected, oriented 3-manifold containing a pair of nonseparating
2-spheres S and T . Then there is an (orientation preserving) diffeomorphism of M with itself that carries
S to T .

Proof. Moving S by an isotopy, we can assume that S and T meet transversely. We work by induction on
the number k of connected components of S ∩ T . If k > 0, then we can write [S] = [S+] + [S−] as before,
so that either S+ or S− is a nonseparating k-sphere in M ; without loss of generality, S+ is nonseparating.
Moving S+ by a small isotopy, we can arrange that it is disjoint from S and intersects T in fewer than k
components. Applying the inductive hypothesis, we obtain diffeomorphisms of M carrying S to S+ and S+

to T ; the composition of these diffeomorphisms then does the job.
If k = 0, then S and T are disjoint. Since M − S is connected, M − (S ∪ T ) has at most 2 components.

Assume first that M − (S ∪ T ) = N
∐
N ′, and let N and N ′ be the 3-manifolds obtained by capping off

the boundary 2-spheres of N and N ′. Since the orientation-preserving diffeomorphism group Diff+(N) acts
transitively on pairs of distinct points of N , we can find a diffeomorphism which restricts to a diffeomorphism
of N which exchanges the two boundary components. Similarly, we can find such a diffeomorphism of N .
Modifying them by an isotopy if necessary (using the connectedness of Diff+(S2)), we can assume that they
glue to give a diffeomorphism of M which exchanges S and T .

The proof when M − (S ∪ T ) is similar: we let M denote the 3-manifold obtained by capping off the
boundary 3-spheres in M−(S∪T ), and use the fact that Diff+(M) acts transitively on quadruples of distinct
points in M .

By repeatedly applying the above result, we are reduced to proving the uniqueness of prime decomposi-
tions

M1#M2# · · ·#Mn 'M 'M ′1# · · ·#M ′m
in which each factor (on either side) is irreducible. Without loss of generality n,m > 1 (otherwise M = S3

or is irreducible, and there is nothing to prove). Let T be the separating 2-sphere of M corresponding to the
decomposition M ′1#(M ′2# · · ·#M ′m). Similarly, we can choose nonintersecting 2-spheres S1, . . . , Sn−1 giving
rise to the first decomposition. Without loss of generality, T meets

⋃
Si transversely in k circles. We assume

that the system of spheres {Si} has been chosen to minimize k. If k = 0, then T is contained in some Mi.

2



Since Mi is irreducible, T bounds a 3-disk in Mi. Let {Mj1 , . . . ,Mjk
} denote the collection of those Mj which

are attached to Mi via spheres contained in this 3-disk. Reindexing, we can assume that j1 = 1, . . . , jk = k.
Then T separates M into pieces M1# . . .#Mk and Mk+1# . . .#Mn. It follows either that k = 1, M1 'M ′1,
and M2# . . .#Mn ' M ′2# . . .#M ′m, or that k = n − 1, Mn ' M ′1, and M1# . . .#Mn−1 ' M ′2# . . .#M ′m.
In either case, we can conclude by induction that the prime factors agree up to reindexing.

If k > 0, then as before we can choose an innermost circle C in the intersection (
⋃
Si) ∩ T , so that C

bounds a disk D in T which does not intersect any Si; this disk is then contained in Mj − B3 ⊆ M . Let
S = Si be the the boundary sphere of Mj − B3 containing C, so that C cuts S into two disks E− and E+.
Let S+ = E+∪D. Then S+ is a 2-sphere in Mj ; since Mj is irreducible we conclude that S+ bounds a 3-disk
X. Replacing E+ by E− if necessary, we can assume that B3 ⊆ X. By a small isotopy, we can arrange that
S+ does not intersect T along C. Replacing Si by S+, we obtain a system of spheres which intersects T in
fewer than k circles, and can conclude by the inductive hypothesis.

3


