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In this lecture, we begin our study of 3-manifolds. Our ultimate goal is to say something about the
classification of 3-manifolds. To this end, we begin by considering an arbitrary compact 3-manifold M : what
might it look like?

We observe that M can be written as a disjoint union of finitely many connected 3-manifold. Conse-
quently, there is no harm in assuming (as we will from now on) that all of our 3-manifolds M are connected,
so that π0M ' ∗. Consider now the fundamental group π1M . Let M̃ denote the universal cover of M .
If π1M is finite, then M̃ is a compact, simply connected 3-manifold. In this case, the structure of M is
understood:

Theorem 1 (Perelman; Poincare Conjecture). Let M̃ be a simply connected compact 3-manifold. Then
M̃ ' S3.

The manifold M itself can be recovered as a quotient S3/π1M , for some free action of the finite group π1M
on the 3-sphere S3. There are a number of possibilities for what such an action can look like (for example,
Lens spaces can be obtained via this construction); we will return to this point in a later lecture. For present
purposes, we will regard these examples as “understood” and move on the case where the fundamental group
π1M is infinite.

If π1M is infinite, the universal cover M̃ is noncompact. It follows that H3(M̃ ; Z) ' H0
c(M̃ ; Z) ' 0, by

Poincare duality. Since M̃ is a simply connected space of dimension 3, we have two possibilties:

(i) The second homology group H2(M̃ ; Z) does not vanish. By the Hurewicz theorem, this group is
isomorphic to π2M̃ ' π2M , so that there are nontrivial maps S2 →M .

(ii) The universal cover M̃ is contractible, so that M = M̃/π1(M) is homotopy equivalent to the classifying
space Bπ1M .

Our goal in the next few lectures is to show that the study of 3-manifolds in general can be reduced to the
case (ii). As a first step, we consider the prototypical example of 3-manifolds M which do not satisfy (ii).
Let M0 and M1 be a pair of 3-manifolds containing points x and y. Let M ′0 and M ′1 denote the 3-manifolds
with boundary S2 obtained by removing small balls around x and y (or by performing real blow-ups at x
and y). We denote the amalgam M ′0

∐
S2 M ′1 by M0#M1; this 3-manifold is called the connect sum of M0

and M1.

Warning 2. The connect sum M0#M1 depends not only on M0 and M1, but on a choice of identification
of the boundaries ∂M ′0 ' S2 ' ∂M ′1. This choice of identification only matters up to isotopy (if we are
interested only in the diffeomorphism class of the connect sum M0#M1), but the space Diff(S2) ' O(3)
has two different connected components, as we saw in the last lecture. Note however that if M0 and M1

are oriented, then there is a unique isotopy class of identifications such that M0#M1 admits an orientation
compatible with those of M0 and M1. For simplicity, we will restrict our attention to the oriented case.

The operation # is commutative and associative up to diffeomorphism. Moreover, it has a unit given by
the 3-sphere S3: we have S3#M 'M for any 3-manifold M .
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Definition 3. Let M be a 3-manifold which is not a 3-sphere. We say that M is prime, for any decomposition
M 'M0#M1, either M0 or M1 is diffeomorphic to S3.

Our goal in this lecture is to prove the following:

Theorem 4. Let M be a 3-manifold. Then M admits a decomposition

M 'M1#M2# · · ·#Mn

where each Mi is prime. (Here we allow the degenerate possibility that n = 0, in which case the expression
on the right side means the 3-manifold S3.)

In the next lecture, we will prove a theorem of Milnor which asserts that the prime factors Mi of M
are unique up to diffeomorphism. For the moment, we will be content to prove the existence of a prime
factorization asserted by Theorem 4.

Notation 5. Let M be a compact 3-manifold. The fundamental group π1M is a finitely generated group.
We let n(M) denote the minimal number of generators for π1M . Note that n(M) = 0 if and only if π1M ' ∗,
which (by virtue of the Poincare conjecture) is equivalent to the assertion that M is a 3-sphere.

We will prove Theorem 4 using induction on n(M). If n(M) = 0, then M ' S3 and there is nothing to
prove. Similarly, if M is prime then we are done. Otherwise, we can write M 'M ′#M ′′ where M ′ and M ′′

are not diffeomorphic to S3, so that n(M ′), n(M ′′) > 0. If M ′ and M ′′ admit prime factorizations, then these
together give a prime factorization of M . The existence of these prime factorizations follows immediately
from the inductive hypothesis and the following:

Lemma 6. For any pair of compact 3-manifolds M ′ and M ′′, we have n(M ′#M ′′) = n(M ′) + n(M ′′).

Remark 7. The proof of Theorem 4 sketched above depends on the Poincare conjecture. However, Theorem
4 was known long before the Poincare conjecture. To give a proof independent of the Poincare conjecture,
special considerations are needed to show the existence of prime factorizations when n(M) = 0. We will not
pursue the point further here.

To prove Lemma 6 we observe that since S2 is simply connected, van Kampen’s theorem implies that
π1(M ′#M ′′) is the free product π1M

′ ? π1M
′′ of the groups M ′ and M ′′. The inequality n(M ′#M ′′) ≤

n(M ′) + n(M ′′) is obvious, since any if {gi} is a collection of generators for π1M
′ and {hj} is a collection

of generators for π1M
′′, then {gi, hj} is a collection of generators for π1M

′ ? π1M
′′. The reverse inequality

follows from the following:

Theorem 8 (Grushko). Let F be a finitely generated free group, and let φ : F → G ? H be a surjection of
groups. Then F can be decomposed as a free product F0 ?F1 so that φ is a free product of maps φ0 : F0 → G,
φ1 : F1 → H.

Remark 9. In the situation of Theorem 8, the groups F0 and F1 are automatically free (since they are
subgroups of the free group F ) and finitely generated (since the rank of F is the sum of the ranks of F0 and
F1). Since φ is surjective, φ0 and φ1 are also surjective, so that n(G)+n(H) ≤ n(F0)+n(F1) = n(F ), where
n(X) denotes the minimal number of generators for a group X.

We will describe a geometric proof of Grushko’s theorem, due to Stallings. Let BG and BH denote
classifying spaces for G and H, and consider the space X = BG ∨ BH obtained by gluing BG and BH
together along a point which we will denote by ∗. By van Kampen’s theorem we have π1X = G?H. In fact,
X is a classifying space B(G ? H), though we will not need to know this.

Choose a system of generators {v1, . . . , vk} for the group F . We regard φ as a map F → π1(X, ∗), so that
each φ(vi) is represented by a loop Li from ∗ to itself in X. Without loss of generality, we can assume that
Li is a composition of finitely many loops Li = Li,0 ◦ . . . ◦ Li,ni

where each Li,ni
belongs entirely to BG or
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to BH. Let Y denote the bouquet of circles ∨iS
1, so that the maps {Li}1≤i≤k determine a continuous map

f : Y → X. Using the above formulas for Li, we conclude that Y can be written as a union of subgraphs

YG

∐
Y0

YH

where f(YG) ⊆ BG, f(YH) ⊆ BH, Y0 is a finite number of points, and f(Y0) = {∗}.
To prove Theorem 8, we will construct the following:

(1) A homotopy equivalence Y ↪→ K.

(2) A decomposition K ' KG

∐
K0
KH extending the decomposition Y ' YG

∐
Y0
YH , where the topolog-

ical space K0 is a graph without loops (in other words, a union of finitely many trees) and therefore
homotopy equivalent to finitely many points.

(3) A map f ′ : K → X extending f , which carries KG into BG, KH into BH, and K0 to ∗.
so that the following condition is satisfied:

(4) The space K0 is a tree.

Then F ' π1Y ' π1K by (1), and the map φ : F → G ? H can be identified with f ′∗ : π1K → π1X by
(3). Using (4) and van Kampen’s theorem, we deduce that F = π1K ' π1KG ? π1KH , and we will have the
desired decomposition of F .

If Y0 is connected, we can take K = Y and there is nothing to prove. In the general case, we proceed in
several steps. We first show that it is possible to construct the data described in (1), (2), and (3) so that
the following weaker version of condition (4) holds:

(4′) There exist two different connected components of Y0 which belong to the same component of K0.

If we can satisfy this condition, we then replace Y by K and repeat the same argument. The cardinality of
the sets π0K0 will form a decreasing chain as we proceed, and must eventually stabilize to the case where
K0 is connected (and therefore a tree, by virtue of (2).

Let C1, . . . , Cm denote the set of path components of Y0, and choose a point yi ∈ Ci for 1 ≤ i ≤ m. Since
Y is path connected, we can choose a path γ in Y from y1 to y2. Note that f(γ) is a loop in X based at the
point ∗, and therefore represents an element of π1X. Since φ is surjective, we can compose the original path
γ with a loop based at y1, and thereby arrange that f(γ) is nullhomotopic. We have a homotopy

γ ' γ1 ◦ . . . ◦ γp

where each of the paths γi is supported entirely in YG or in YH and has endpoints in {y1, . . . , ym}. We may
assume that if any path γa begins and ends at the same point yj , then f(γa) is not nullhomotopic: otherwise,
we can replace γ by the path

γ1 ◦ . . . ◦ γa−1 ◦ γa+1 ◦ . . . ◦ γp.

Concatenating the paths γa if necessary (and possibly swapping G with H), we can assume that γa is a path
in YG when a is odd and a path in YH when a is even. We observe that each f(γa) is a closed loop in X, so
we have

1 = [f(γ1)] . . . [f(γp)] ∈ π1X ' G ? H.

Using the structure of the free product G?H, we deduce that some factor [f(γa)] must vanish. Without loss
of generality, we may assume that γa is a path in YG from yi to yj ; since f(γa) is nullhomotopic we have
i 6= j. Note that since the map G→ G ?H is injective, the map f(γa) is already nullhomotopic as a map in
BG.

Let K0 be the space obtained from Y0 by adjoining a path τ from yj to yi, let KH = K0

∐
Y0
YH . We

now let KG be the space obtained from K0

∐
Y0
YG by attaching a 2-cell bounding the loop τ ◦ γa. Since

f(γa) is nullhomotopic in BG, we can extend f to a map f ′G : KG → BG which takes the constant value ∗
on the path τ . Then f ′G and f determine a map f ′ : K → X, which is easily seen to satisfy (1), (2), (3), and
(4′).
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