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The goal of this lecture is to compute the homotopy type of the diffeomorphism group of the 2-sphere S2.
The idea is to endow the 2-sphere with some additional structure (a conformal structure). We will show that
this structure is essentially unique, and it will follow that the diffeomorphism group Diff(S2) is homotopy
equivalent to the group of automorphisms which respect this additional structure. The latter group is finite
dimensional and easy to describe.

Definition 1. Let M be a smooth manifold. A (Riemannian) metric on M consists of a positive definite
inner product on each tangent space TM,x which varies smoothly with the chosen point x ∈ M . We will
denote the collection of Riemannian metrics on M by Met(M).

Given a metric g on M and a smooth function λ : M → R>0, the product λg is another metric on
M . We will say that two metrics g and g′ are conformally equivalent if g = λg′ for some smooth function
λ : M → R>0. The relation of conformal equivalence is an equivalence relation on Met(M); we will denote
the set of equivalence classes by Conf(M).

There is a natural topology on Met(M) (we can identify Met(M) with an open subset of the Frechet
space of all smooth sections of the bundle Sym2 T∨M ); we endow Conf(M) with the quotient topology.

Remark 2. The exact topologies that we place on Met(M) and Conf(M) are not really important in what
follows: for our purposes it will be enough to work with the singular simplicial sets of Met(M) and Conf(M).

Lemma 3. Let M be a smooth manifold. Then the spaces Met(M) and Conf(M) are contractible.

Proof. The contractibility of Met(M) follows from the fact that it is a convex subset of a topological vector
space. More concretely, choose a metric g0 on M (such a metric can be constructed by choosing standard
metrics on Euclidean charts and averaging them using a partition of unity). Then any other metric g on M
can be joined to g0 by a canonical path of metrics: we simply choose a straight line gt = (1− t)g0 + tg.

Let G denote the collection of smooth maps from M to R>0. We regard G as a group with respect to
pointwise multiplication. The group G is contractible: again, it is a convex subset of the Frechet space of
all smooth real-valued functions on M , so every function f ∈ G is connected to the constant function 1 by a
straight-line homotopy ft(x) = (1− t)f(x) + t. The group G acts freely on Met(M) with quotient Conf(M).
We therefore have a fibration sequence

G→ Met(M)→ Conf(M)

Since G and Met(M) are contractible (and the map Met(M) → Conf(M) is surjective), we conclude that
Conf(M) is also contractible.

A conformal structure on an n-manifold M can be thought of as a reduction of the structure group of the
tangent bundle of M from GLn(R) to R≥0×O(n). If M is an oriented 2-manifold endowed with a conformal
structure, then its tangent bundle has structure group reduced to R≥0×SO(2). If we choose an identification
R2 = C (endowing the latter with its standard notion of length), then we can identify R≥0×SO(2) with the
group C∗ of nonzero complex numbers, acting on C by conjugation. In other words, an orientation of M
together with a conformal structure on M give us a reduction of the structure group of M from GL2(R) to
GL1(C): that is, they give an almost complex structure on M .
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Theorem 4 (Existence of Isothermal Coordinates). Let M be a 2-manifold equipped with an almost complex
structure. Then M is a complex manifold: in other words, near each point x ∈ M we can choose an open
neighborhood U and an open embedding U ↪→ C of almost complex structures.

Remark 5. In the situation of Theorem 4, suppose that we think of the almost complex structure on M as
being given by an orientation together with a conformal structure, where the latter is given by some metric g
on M . The assertion of Theorem 4 is equivalent to the assertion that we can choose local coordinate systems
on M in which g is conformally flat: that is, it has the form λg0 where g0 denotes the standard metric on
R2 ' C.

Remark 6. Theorem 4 is a consequence of the Newlander-Nirenberg theorem, which asserts that an almost
complex structure on a manifold M is a complex structure if and only if a certain obstruction (called the
Nijenhuis tensor) vanishes. When M has dimension 2, the vanishing of this tensor is automatic. However,
Theorem 4 is much more elementary. Nevertheless, we will not give a proof here.

Now suppose that M is the 2-sphere S2, which we regard as an oriented smooth manifold. Every choice
of conformal structure η ∈ Conf(M) endows M with the structure of a complex manifold: that is, a Riemann
surface.

Proposition 7. Up to isomorphism, the 2-sphere S2 admits a unique complex structure. That is, if X is a
Riemann surface which is diffeomorphic to S2, then X is biholomorphic to the Riemann sphere CP1.

Proof. Let OX denote the sheaf of holomorphic functions on X. Since X is compact, it has a well-defined
holomorphic Euler characteristic

χ(OX) = dim H0(X,OX)− dim H1(X,OX).

This Euler characteristic can be computed using the Riemann-Roch theorem: it is given by 1−g = χ(X)
2 = 1,

since X has genus 0. The space H0(X,OX) consists of globally defined holomorphic functions on X. By
the maximum principle (and the fact that X is compact), every such function must be constant, so that
H0(X,OX) ' C. It follows from the Euler characteristic estimate that H1(X,OX) vanishes.

Now choose a point x ∈ X, and consider the sheaf OX(x) of functions on X which are holomorphic except
possibly at the point x, and have a pole of order at most 1 at x. We have an exact sequence of sheaves

0→ OX → OX(x)→ x∗C→ 0

Since the cohomology group H1(X,OX) vanishes, we get a short exact sequence

0→ H0(X,OX)→ H0(X,OX(x))→ H0(X,x∗C) ' H0({x},C) ' C→ 0.

This proves that H0(X,OX(x)) is 2-dimensional. In particular, there exists a nonconstant meromorphic
function f on X having at most a simple pole at x. Since f cannot be holomorphic (otherwise it would be
constant), it must have a pole of exact order 1 at x.

We can regard f as a holomorphic map X → CP1 with f(x) =∞. Since f has unique simple pole at x,
this map has degree 1 and is therefore an isomorphism of X with CP1.

Proposition 7 implies that the group Diff(S2) acts transitively on the collection Conf(S2) of conformal
structures on S2. We have a fiber sequence

DiffConf(S2)→ Diff(S2)→ Conf(S2),

where DiffConf(S2) denotes the subgroup of Diff(S2) consisting of diffeomorphisms which preserve the stan-
dard conformal structure on S2 = CP1. Since Conf(S2) is contractible, we conclude that the inclusion
DiffConf(S2) ⊆ Diff(S2) is a homotopy equivalence.

The group DiffConf(S2) can be written as a union Diff+
Conf(S

2)∪Diff−Conf(S
2), where Diff+

Conf(S
2) denotes

the subgroup of orientation preserving conformal diffeomorphisms of S2 (that is, holomorphic automorphisms
of CP1), while Diff−Conf(S

2) consists of orientation reversing conformal diffeomorphisms (antiholomorphic
automorphisms).
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Theorem 8. The inclusion O(3) ↪→ Diff(S2) is a homotopy equivalence.

Proof. It will suffice to show that the inclusion O(3) ↪→ DiffConf(S2) is a homotopy equivalence. For this,
we will show that SO(3) ↪→ Diff+

Conf(S
2) is a homotopy equivalence. Both groups act transitively on the

sphere S2, giving rise to a map of fiber sequences

SO(2) //

θ

��

SO(3)

��

// S2

��
G // Diff+

Conf(S
2) // S2,

where G denotes the group of holomorphic automorphisms of CP1 that preserve the point∞. We will prove
that θ is a homotopy equivalence.

Elements of G can be identified with biholomorphic maps f : CP1 → CP1 carrying ∞ to itself. Such
a map can be viewed as a meromophic function on CP1 having a pole of order at most 1 at ∞. The
collection of all such meromorphic functions forms a vector space which, by the proof of Proposition 7, has
dimension 2. We can write down these meromorphic functions explicitly: they are precisely the maps of the
form z 7→ az + b, where a, b ∈ C. Such a map determines an automorphism of CP1 if and only if a 6= 0.
Consequently, we can identify G with the product C∗ ×C = {(a, b) ∈ C2 : a 6= 0}. The map θ has image
S1 = {(a, b) ∈ C2 : |a| = 1, b = 0}. It is now clear that θ is a homotopy equivalence.

Remark 9. The automorphism group Diff+
Conf(S

2) can be identified with PGL2(C), which contains SO(3)
as a maximal compact subgroup.

We can use the same methods to compute the diffeomorphism group of a surface of genus 1. Such a
surface looks like a torus T = R2 /Z2. This description of T as a quotient makes it evident that two different
groups act on T :

(i) The group T acts on itself by translations.

(ii) The group GL2(Z) acts on T .

These group actions are in fact compatible with one another, and give a rise to a map G → Diff(T ),
where G denotes the semidirect product of T with GL2(Z).

Proposition 10. The map G→ Diff(T ) is a homotopy equivalence.

The proof proceeds in several steps.

(a) The groups G and Diff(T ) both act transitively on T . It will therefore suffice to show that we have a
homotopy equivalence G0 → Diff0(T ), where G0 and Diff0(T ) denote the subgroups of G and Diff(T )
consisting of maps which fix the origin 0 ∈ T . In other words, we must show that the inclusion
φ : GL2(Z)→ Diff0(T ) is a homotopy equivalence.

(b) The map φ has an obvious splitting, since Diff0(T ) maps to GL2(Z) via its action on the homology
group H1(T ; Z). It will therefore suffice to show that Diff1(T ) is contractible, where Diff1(T ) denotes
the group of diffeomorphisms of T which fix the origin 0 and act trivially on the homology of T .

(c) The group Diff1(T ) does not act transitively on Conf(T ). However, it does act freely: suppose that
we fix a point of Conf(T ), which endows T with a complex structure. The fixed point 0 ∈ T endows T
with the structure of an elliptic curve. In particular, it acquires a canonical group structure. If we let
t denote the (complex) Lie algebra of T at the origin, then we get an exponential map t → T which
exhibits T as a quotient t/Λ. Any element f of Diff1(T ) which preserves the conformal structure must
act by a group automorphism of T (since it is complex analytic and fixed the origin), and is therefore
determined by its derivative df : t→ t. Since f is required to act trivially on H1(T ; Z) ' Λ, we deduce
that df = id so that f = id.
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(d) We now have a fiber sequence
Diff1(T )→ Conf(T )→M,

where M = Conf(T )/Diff1(T ) can be thought of as a moduli space for genus 1 Riemann surfaces Σ
equipped with a marked point and an oriented trivialization H1(Σ,Z) ' Z2. Again, any such Σ must
be an elliptic curve and therefore has the form V/Λ, where V is the tangent space to Σ at the origin (a
1-dimensional complex vector space) and Λ ⊆ V is a lattice. Our trivialization Z2 ' H1(Σ,Z) gives an
oriented basis (u, v) for Λ, so a point of M can be identified with an isomorphism class of triples (V, u, v).
Any such triple is uniquely isomorphic to (C, 1, τ) (namely, the choice of an element u trivializes the
vector space V ), where τ is an element of the upper half plane {x+ iy : y > 0} ⊆ C. It follows that M
is contractible. Since Conf(T ) is also contractible, we deduce that Diff1(T ) is contractible, as desired.

We will give a different proof of Proposition 10 shortly.
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