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In this lecture, we will attempt to prove that the theories of smooth and PL manifolds are equivalent. In
view of the smoothing theory we have already developed, this is equivalent to the assertion that the spaces
PL(n)/O(n) are contractible for n > 0. We will attempt to prove this using induction on n. Of course, this
attempt is doomed to failure, since there are PL manifolds which cannot be smoothed and PL manifolds
which admit inequivalent smooth structures (such as Milnor’s exotic spheres).

Let us assume that the space PL(n—1)/O(n—1) is contractible, and attempt to prove that PL(n)/O(n)
is contractible. Consider the map

¢:PL(n—1)/O(n—1) — PL(n)/O(n).

The product smoothing theorem implies that all the homotopy fibers of ¢ are (n—1)-connected. In particular,
they are connected, so that PL(n)/O(n) is connected. Hence ¢ really only has one homotopy fiber up to
equivalence, which can be identified with the loop space QPL(n)/O(n). Since this loop space is (n — 1)-
connected, we have proven the following:

Lemma 1. If PL(n —1)/O(n — 1) is contractible, then PL(n)/O(n) is n-connected.

Consequently, PL(n)/O(n) is contractible if and only if the loop space Q"*1PL(n)/O(n) is contractible.
Let us try to understand this loop space.

First, consider the loop space Q*PL(n)/O(n). Let D™ be an n-dimensional disk in the PL setting, and
equip the boundary 9 D™ with its standard smooth structure. Smoothing theory implies that the space of
smoothings of D™ (compatible with our given smoothing on the boundary) can be identified the space of
solutions to the lifting problem

8 D" — BO(n)

|- ]

D"~ BPL(n).

Since the horizontal maps are constant (the disk D™ has trivial tangent microbundle in both the smooth
and PL settings), this space of solutions can be identified with Q" PL(n)/O(n).

When we loop the space Q" PL(n)/O(n) one more time, we encounter not classifying spaces of smooth
structures but classifying spaces for their automorphisms. More precisely, let Diff (D", d) denote the space
of diffeomorphisms of the standard smooth disk D™ which are the identity near the boundary 9 D", and
let Homeopy (D™, 0) be defined similarly. Then the spaces BDiff(D™,9) and B Homeopr(D",d) can be
identified with connected components of the classifying for smooth and PL manifolds which are bounded
by the sphere S"~!. As we have seen, there is a map (well-defined up to homotopy) B Diff(D",d) —
BHomeopr, (D™ 0). Denote the homotopy fiber of this map by Homeopr (D™, d)/Diff(D", ), so that
Homeopr, (D", d)/Diff (D™, 0) ~ Q™ PL(n)/O(n). We have a fibration sequence

Diff (D™, ) — Homeop (D", 0) — Homeopr (D", d)/ Diff (D", 9).

Lemma 2. The space Homeopr, (D™, 0) is contractible.



Lemma 2 is just an articulation of the Alexander trick, which we described in the last lecture: every PL
homeomorphism of D™ which is the identity on the boundary is canonically isotopic to the identity.

It follows from Lemma 2 that we can identify Diff (D™, 9) with the loop space of Homeopr, (D", 9)/ Dift (D™, 9),
and therefore with Q"1 PL(n)/O(n). We have proven:

Proposition 3. Assume that PL(n —1)/O(n — 1) is contractible. Then PL(n)/O(n) is contractible if and
only if Diff (D™, 0) is contractible: in other words, if and only if the Alexander trick works in the smooth
category.

We can massage the criterion of Proposition 3 further. Let S™ denote the n-sphere, and choose a point
x € S™. We can identify D™ with the submanifold obtained from S™ by removing the interior of a small
disk around x. We have seen that, in the smooth category, this small disk is determined up to contractible
ambiguity (this is not true in the PL category). Here is another way to articulate this idea: given a point
x € 8", we can define a new smooth manifold M by forming the real blow-up of S™ at z. Namely, we let
M = (S"—{z}) [1(Tsn »—{0})/ Rs be the space obtained from S™ by replacing the point « by the collection
of all directed rays in the tangent space Tgn ;. Then M has the structure of a smooth manifold, which
depends functorially on the pair (S™,z). This smooth manifold is simply a smooth n-disk D™. Moreover,
this construction determines an isomorphism of Diff (D", 9) with the group Diff (S™, {z}) of diffeomorphisms
of §™ which coincide with the identity near {z}. Thus:

Proposition 4. Assume that PL(n —1)/O(n — 1) is contractible. Then PL(n)/O(n) is contractible if and
only if Diff(S™, {x}) is contractible.

Let Diff,(S™) denote the group of diffeomorphisms ¢ of S™ which satisfy ¢(z) = . We have a homotopy
fiber sequence
Diff(S™, {z}) — Diff ,(S") — G
where G denotes the monoid of equivalences from the smooth microbundle of S™ at x. Since a smooth
microbundle is canonically determined by its tangent space along the zero section, this gives us a fiber
sequence

Diff(S™, {x}) — Diff,(5") > GL,(R)
where 0 is given by differentiation at z. It follows that Diff((S™, {«}) is contractible if and only if 6 is a
homotopy equivalence.

Note that the group O(n) acts on S™ by diffeomorphisms fixing the point z. We have a commutative
diagram
Diff,(S™)
/ \
O(n) o GLn(R).

Since 6" is a homotopy equivalence, we deduce that € is a homotopy equivalence if and only if 6’ is a homotopy
equivalence. In other words:

Proposition 5. Assume that PL(n —1)/O(n — 1) is contractible. Then PL(n)/O(n) is contractible if and
only if the inclusion O(n) — Diff,(S™) is a homotopy equivalence.

The group Diff(S™) acts on S™. This gives rise to homotopy fiber sequences

O(n) On+1) ——= g
o]
Diff, ($") — > Diff(S") — > §.

It follows that €’ is a homotopy equivalence if and only if 1 is a homotopy equivalence. This proves the
following:



Theorem 6. Assume that PL(n—1)/O(n—1) is contractible. Then PL(n)/O(n) is contractible if and only
if the inclusion O(n + 1) — Diff (S™) is a homotopy equivalence.

Example 7. The conditions of Theorem 6 are satisfied when n = 1: the space PL(0)/0O(0) is obviously
contractible, while O(2) ~ Diff(S!) by the arguments given on the first day of class. This proves that the
theory of smooth and PL manifolds are the same in dimension 1.

Example 8. To apply Theorem 6 when n = 2, we must show that O(3) ~ Diff(S?). This is a theorem of
Smale, which we will prove in the next lecture.

Example 9. Theorem 6 also applies when n = 3. For this, we need to show that O(4) ~ Diff(S3). This
assertion is known as the Smale conjecture. It was proven by Hatcher, but we will not present the details in
class.

Example 10. It is unknown (at least by me) whether Theorem 6 applies when n = 4. This is equivalent
to the question of whether the inclusion O(5) — Diff(S*) is a homotopy equivalence. Even the simplest
consequence of this assertion is a difficult open question: is every orientation-preserving diffeomorphism of
5% isotopic to the identity?

Remark 11. Even if the second hypothesis of Theorem 6 fails, the contractibility of PL(n—1)/O(n—1) still
has powerful consequences for the theory of n-manifolds. Namely, it implies that PL(n)/O(n) is n-connected
(Lemma 1). The smooth structures on a PL n-manifold M are classified by sections of a fibration over M
with fiber PL(n)/O(n). Since M is n-dimensional and these fibers are n-connected, we deduce that the
space of sections is nonempty and connected: in other words, M admits a smooth structure which is unique
up to PD isotopy. We can proceed further to argue that PL(n + 1)/O(n + 1) must again be n-connected,
so that every PL (n 4 1)-manifold M admits a compatible smooth structure (though we will not know that
this smooth structure is unique).

For example, our present state of knowledge is enough to guarantee that every PL 2-manifold can be
smoothed in an essentially unique way, and that every PL 3-manifold admits a smoothing. After we prove
Smale’s theorem in the next lecture, we will know that PL 3-manifolds admit essentially unique smoothings,
and that PL 4-manifolds can be smoothed. Assuming the Smale conjecture, we can go further to say that
PL 4-manifolds admit essentially unique smoothings, and that PL 5-manifolds can be smoothed.

These results are not optimal: as it turns out, PL manifolds of dimension < 7 can be smoothed, and
these smoothings are essentially unique in dimensions < 6.



