Product Structure Theorem: End of the Proof (Lecture 22)
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We continue our proof of the product structure theorem for smooth structures on PL manifolds. Recall
that we are reduced to proving the following:

Proposition 1. Let K C R™ x R be a polyhedron which is the closed star of the origin 0 with respect to some
PL triangulation of R™* (so that K is the cone on 0 K, with the origin as the cone point), let m: K — R
denote the projection onto the last factor. Let f : K — R™T! be a PD embedding satisfying the following
conditions:

(1) The image of f is the unit ball B(1) C R™" and f(0) = 0.
(2) For 8<t<1andz € 0K, we have f(tx) =1tf(x).

(3) The projection 7 is injective when restricted to the vertices of K (with respect to some PL triangulation),
so that o f~1 is reqular on the interior of the unit ball except possibly at the origin.

(4) The map 7o f coincides with © on 7~ 1(—e¢,€) N S™ for € sufficiently small.
(5) The map f is PL in a neighborhood of the origin.

Then, after modifying f by a PD isotopy which is trivial on 0 K, we can arrange that o f=1 is reqular on
the interior of the unit ball.

Replacing f by its restriction to tK for ¢ close to 1, we can assume that 7o f is regular on B(1) — {0}. Let
Co=0KnNn l—e ¢ and let C = [.8,1] x Cy C K. Conditions (4) and (2) guarantee that 7|C = (7o f)|C.
Let D C K be a PL neighborhood of the origin on which f is PL. Choose a triangulation S of K with the
following properties:

(1) The subpolyhedra C' and D of K are unions of simplices.
(2) The map 7 is injective on the vertices of K.

Let Lf denote the linearized version of f with respect to the triangulation S (that is, the unique map which
is linear on each simplex of S and which agrees with f on vertices). Choose a PL function x : K — [0,1]
such that x = 1 on .8K and x = 0 on [.9,1] x K, and define a homotopy {f; : K — R™"'} by the formula

fi(@) = tx(@) Lf(x) + (1 — tx(2)) f(z).

We have seen that if S is a sufficiently fine triangulation, then f; is a PD isotopy from f to fi, where f;
is a map which is PL on .8K and agrees with f on [.9,1] x 9 K. Since f is already PL on D, we have
f=/f1on D, sothat wo ffl is regular on f1(D — {0}). Similar reasoning shows that mo f; = 7o f =7 on
C C K. Choosing S sufficiently fine, we can arrange that f; is an arbitrarily close approximation to f (in
the Cl-sense). In particular, we can arrange that:

(a) The map 7o f; ! is regular on B; — f1(D) (and therefore on B(1) — {0}).



(b) For every point x € f1(.8K), we have tx € f1(.8K) for 0 <t <1 (since f1(.8K) closely approximates
f(.8K), which is the ball B(.8)).

(¢) For x ¢ C, we have |(w o f)(z)| >

€
5.
We define another map f, : K — R™"! so that for z € 9 K, we have

) faltx) if §<t<1
) = {fgf(-&c) if0<t< 8.

Using the assumption that 7 o f; ! is regular on B(1) — {0}, it is easy to check that 7o f; ! is regular on
B(1) — {0} (if v € R™"! is a regular vector for wo f; ! at a point z € f1(.8K), then v is regular for 7o f5 !
at tx for t € (0,1]). In order to proceed, we need to know the following:

Claim 2. There exists a PD isotopy from f1 to fs, fized near 0 K.

In fact, there exists a PL isotopy from f; to fo which is supported on .8 K. This is an obvious consequence
of the following result:

Theorem 3 (The Alexander Trick). Let ¢, ¢’ : D™ — D™ be two PL homeomorphisms from the PL n-disk
to itself. If ¢ and ¢’ agree on the boundary & D™, then ¢ is PL isotopic to the identity.

Composing with an inverse to ¢, we are reduced to proving that if ¢ is the identity on & D™, then ¢ is
PL isotopic to the identity. We will give a proof in the topological category: the PL version of Theorem 3
can be established using a construction of the same flavor. Let us identify D™ with the unit ball B(1) C R".
We define an isotopy {¢: : B(1) — B(1)} by the formula

s itt<s
r(sz) = {w(sg) if t > s.

where z € 9 B(1). It is easy to see that ¢, is an isotopy from ¢ = id to ¢1 = ¢.

Remark 4. The Alexander trick does not work in the smooth category; the map described above exhibits
essential nondifferentiable behavior when t = 0.

We now return to the proof of Proposition 1. Note that fs has the following properties:
o If z € Cy COK, then nfo(x) = n(z).
o If z € 9K — Cy, then |(mo fo)(tx)| > &.

We are free to replace f by f2. Since mwo f5 s regular away from the origin, we are free to replace K by any
smaller neighborhood of the identity. In particular, we can replace K by the star of the origin with respect
to some triangulation of .8K with respect to which f5|.8K is PL. We are thereby reduced to proving the
following version of Proposition 1

Proposition 5. Let K CR™ x R be a polyhedron which is the closed star of the origin 0 with respect to some
PL triangulation of R™" (so that K is the cone on & K, with the origin as the cone point), let 7 : K — R
denote the projection onto the last factor. Let f : K — R™ be a PL embedding satisfying the following
conditions:

(1) The image of f is the unit ball B(1) C R™" and f(0) = 0.
(2) The projection w is injective when restricted to the vertices of K.

(3) There exists a subpolyhedron Cy C O K and a constant € such that |r(tx)],|m o f(tz)| > te for x ¢ Cy.



(4) The maps 7o f and 7 agree on Co (and therefore on the cone C = {tx : & € Cy,t € [0,1]}).

Then, after modifying f by a PD isotopy which is trivial on 0 K, we can arrange that o f~1 is reqular on
the interior of f(K).

We will construct a PD isotopy {f;} of f with the following properties:
(#) For every simplex o of our triangulation of K, the {f;|o} is a smooth isotopy from o to f(o).
(#4) The isotopy {f:} is fixed on 0 K.
(#i1) We have 7o f; = 7 in a neighborhood of the origin.

Since 7 is injective on the vertices of K, the map 7o f; ! will automatically be regular on the interior of
K except possibly at the origin; condition (i) will guarantee regularity at the origin as well. It therefore
suffices to construct {f;}. Since m is injective on the vertices of K, the set V of vertices of 9 K can be
partitioned into two subsets V; = {v € V : w(v) > 0} and V_ = {v € V : 7n(v) < 0}. Refining our
triangulation of 0 K if necessary, we may assume that every simplex 7 of 0 K which contains vertices from
both V, and V_ belongs to Cy. For each simplex 7 of 0 K, let 7 denote the cone of this simplex (with cone
point the origin). We construct the isotopies {f;|7} one simplex at a time. If 7 is a simplex of Cp, then we
let {f:|7} be the trivial isotopy (this satisfies (i) since f satisfies (4)). Otherwise, we may assume without
loss of generality that each vertex v of 7 belongs to V. Let v1,...,v; be the vertices of 7. There exist
positive constants {a; }1<;<k such that m(v;) = a;(7 o f)v;. We define a homotopy {g; : ¢ — R0 f(0)} by
the formula

geMavr + . Aok) = D Akf(v) (ta; + (1 - 1)),

Then g; is a homotopy from f|7 = g to a map gy satisfying m o g; = w. Note that g; carries a neighborhood
of the origin in 7 into f(7). Using a relative version of the smooth isotopy extension theorem, we can find
an isotopy {f:|7 — f(7)} which is supported in a compact subset of 7 — 7, agrees with g; near the origin,
and agrees with the isotopies we have already constructed on the cone of 0 7.



