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Recall that we are in the process of proving the product structure theorem for smooth structures on PL
manifolds, which (by virtue of smoothing theory) is equivalent to the following connectivity estimate:

Theorem 1. Let m ≥ 0. Then all homotopy fibers of the map PL(m)/O(m) → PL(m + 1)/O(m + 1) are
m-connected.

We have reduced the proof to the following statement:

Proposition 2. Let K ⊆ Rm×R be a polyhedron which is the closed star of the origin 0 with respect to some
PL triangulation of Rm+1 (so that K is the cone on ∂ K, with the origin as the cone point), let π : K → R
denote the projection onto the last factor. Let f : K → Rm+1 be a PD embedding satisfying the following
conditions:

(1) The image of f is the unit ball B(1) ⊆ Rm+1.

(2) For 1
2 ≤ t ≤ 1 and x ∈ ∂ K, we have f(tx) = tf(x).

(3) The projection π is injective when restricted to the vertices of K (with respect to some PL triangulation),
so that π ◦ f−1 is regular on the interior of the unit ball except possibly at the origin.

Then, after modifying f by a PD isotopy which is trivial on ∂ K, we can arrange that π ◦ f−1 is regular on
the interior of the unit ball.

Let Sm ⊆ B(1) denote the unit sphere. Condition (1) implies that f restricts to a PD homeomorphism
f0 : ∂ K → Sm. Since π is injective on vertices, the composition π ◦ f−1

0 : Sm → R is regular except possibly
at the images of the vertices of ∂ K. In particular, it is regular in a neighborhood of ∂ K ∩ π−1{0}. Using
the arguments of Lecture 19, we deduce that there is a PD isotopy {gt : ∂ K → Sm}t∈[0,1] such that g0 = f0
and π ◦ g−1

1 : Sm → R has 0 as a regular value. This map decomposes the sphere Sm into two smooth
submanifolds

D− = {g1π−1 R≤0} D+ = {g1π−1 R≥0}.
The map g1 provides PD homeomorphisms of D− and D+ with PL m-disks.

We will now use the product smoothing theorem for (m − 1)-manifolds (which we may assume as an
inductive hypothesis) to verify the following:

Lemma 3. Let X = [0, 1]m be a PL m-disk. Then, up to PD isotopy and X has a unique smooth structure
(in other words, there are no exotic smooth structures on PL m-disks).

Proof. Smoothing theory tells us that smooth structures on X are classified by the following homotopy-
theoretic data:

(a) Solutions to the lifting problem
BO(m)

��
X //
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BPL(m).
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(b) Solutions to the induced lifting problem

BO(m− 1)

��
∂ X

55kkkkkkkk
BO(m)×BPL(m) BPL(m− 1).

Using Theorem 1 in dimensions < m, we deduce that PL(m)/O(m) is connected. Since X is contractible,
problem (a) has a unique solution up to homotopy. Solutions to problem (b) can be described as sections of a
fibration φ : ∂̃ X → ∂ X whose fibers are homotopy fibers of the map PL(m−1)/O(m−1)→ PL(m)/O(m).
Invoking Theorem 1 again (in dimension m − 1), we deduce that these fibers are (m − 1)-connected. Since
∂ X has dimension (m− 1), the fibration φ has a unique section up to homotopy.

Returning to our problem, we deduce that the smooth submanifolds D−.D+ ⊆ Sm are diffeomorphic to
smooth disks. We now need the following:

Lemma 4. Let B(1) denote the open unit ball in Rm, and suppose we are given a smooth orientation-
preserving embedding i : B(1)→ Sm. Then i is isotopic to the standard embedding.

We can identify Sm with the one-point compactification of Rm. Without loss of generality, we may assume
that the image of i does not contain the point at infinity (since i is not surjective, we can always reduce to
this situation by applying a rotation of the sphere Sm). Then Lemma 4 is an immediate consequence of the
following:

Lemma 5. Let B(1) denote the open unit ball in Rm, and let i : B(1) → Rm be a smooth orientation-
preserving embedding. Then i is isotopic to the standard embedding.

Proof. Applying a translation of Rm, we can arrange that i(0) = 0. Acting by a linear map, we can arrange
that the derivative of i is equal to zero near the origin (since i is orientation preserving, this linear map can
be chosen to lie in the identity component of GL(n,R)). Define a smooth homotopy {it : B(1)→ Rm} from
i0 = i to the standard inclusion by the formula it(x) = (1− t)i(x)+ tx. This map is generally not an isotopy.
However, it is an isotopy near 0, and therefore on a ball B(ε) for ε sufficiently small. Let j : B(1)→ Rm be
the map given by j(x) = i(εx)

ε . Then it determines an isotopy from j to the standard embedding. Moreover,
i is isotopic to j, since we have a smooth family of maps

{jt(x) =
i(tx)
t
}t∈[ε,1].

Remark 6. We can carry out a version of the proof of Lemma 5 with parameters, given an appropriate
generalization of the condition that i be orientation-preserving (we need to be able to arrange that the
derivative of i is the identity near the origin). This argument can be used to prove the following fact: any
smooth microbundle contains an (essentially unique) smooth disk bundle. This is the key difference between
the smooth and PL categories: a PL microbundle always contains a PL Rn-bundle, but this generally cannot
be refined to a PL disk bundle.

We now return to the proof of Proposition 2. Lemma 4 implies that we can adjust the PD isotopy {gt} by
a smooth isotopy of Sm to arrange that D− (and therefore D+) can be identified with the standard disks in
Sm. It follows that D− ∩D+ is the standard equator Sm−1 ⊆ Sm, given by the zero locus of the projection
π : Sm ↪→ Rm×R→ R onto the last factor. In other words, we can assume that π ◦ g−1

1 coincides with π on
Sm−1. Using the uniqueness of smooth collars, we may further adjust our isotopy so that π ◦ g−1

1 coincides
with π on a neighborhood π−1(−ε, ε) of Sm−1.
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We now define a PD isotopy {ft : K → B(1)}t∈[0,1] by the formula

ft(sx) =


f(sx) if s ≤ 1

2

sgtt′(x) if s = 1
2 + t′

6 , 0 ≤ t
′ ≤ 1

sg1(x) if 4
6 ≤ s ≤

5
6

sgtt′(x) if s = 1− t′

6 , 0 ≤ t
′ ≤ 1.

We can then replace f = f0 by f1 in the statement of Proposition 2. Replacing K by 5
6K and multiplying

f by 6
5 , we are reduced to proving the following analogue of Proposition 2:

Proposition 7. Let K ⊆ Rm×R be a polyhedron which is the closed star of the origin 0 with respect to some
PL triangulation of Rm+1 (so that K is the cone on ∂ K, with the origin as the cone point), let π : K → R
denote the projection onto the last factor. Let f : K → Rm+1 be a PD embedding satisfying the following
conditions:

(1) The image of f is the unit ball B(1) ⊆ Rm+1.

(2) For 4
5 ≤ t ≤ 1 and x ∈ ∂ K, we have f(tx) = tf(x).

(3) The projection π is injective when restricted to the vertices of K (with respect to some PL triangulation),
so that π ◦ f−1 is regular on the interior of the unit ball except possibly at the origin.

(4) The maps π and π ◦ f−1 coincide on Sm ∩ π−1(−ε, ε) ⊆ B(1) for some ε > 0.

We will prove Proposition 7 in the next lecture, thereby completing the proof of the product structure
theorem.
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