Piecewise Linear Topology (Lecture 2)

February 8, 2009

Our main goal for the first half of this course is to discuss the relationship between smooth manifolds
and piecewise linear manifolds. In this lecture, we will set the stage by introducing the essential definitions.

Definition 1. Throughout these lectures, we will use the term manifold to refer to a paracompact Hausdorff
space M with the property that each point z € M has an open neighborhood homeomorphic to R", for some
fixed integer n > 0; we refer to n as the dimension of M.

The study of manifold topology becomes substantially easier if we assume that our manifolds are endowed
with additional structures, such as a smooth structure.

Definition 2. Let M be a manifold. We let O}\};p denote the sheaf of continuous real-valued functions on
M, so that for each open set U C M we have O};’p(U) ={f:U — R: f is continuous}.

A smooth structure on M consists of a subsheaf 03] C O}‘?p with the following property: for every point
x € M, there exists an open embedding f : R" — M whose image contains f, such that f* Q5 C OpoP
can be identified with the sheaf of smooth (in other words, infinitely differentiable) functions on R™. In this
case, we will refer to f as a smooth chart on M.

A smooth manifold is a manifold M equipped with a smooth structure. If f : M — N is a continuous
map between smooth manifolds, we will say that f is smooth if the map f* O — O]Tv;p factors through 0%
in other words, if and only if composition with f carries smooth functions on N to smooth functions on M.

We now introduce the (perhaps less familiar) notion of a piecewise linear, or combinatorial manifold.

Definition 3. Let K be a subset of a Euclidean space R". We will say that K is a linear simplez if it can
be written as the convex hull of a finite subset {x1,..., 25} C R™ which are independent in the sense that if
ez =0€R™ and Y ¢; =0 € R, then each ¢; vanishes.

We will say that K is a polyhedron if, for every point x € K, there exists a finite number of linear simplices
o; € K such that the union (J; o; contains a neighborhood of X.

Remark 4. Any open subset of a polyhedron in R" is again a polyhedron.

Remark 5. Every polyhedron K C R" admits a triangulation: that is, we can find a collection of linear
simplices S = {o; C K} with the following properties:

(1) Any face of a simplex belonging to S also belongs to S.
(2) Any nonempty intersection of any two simplices of S is a face of each.
(3) The union of the simplices o; is K.

Definition 6. Let K C R" be a polyhedron. We will say that a map f : K — R™ is linear if it is the
restriction of an affine map from R"™ to R™. We will say that f is piecewise linear (PL) if there exists a
triangulation {o; C K} such that each of the restrictions f|o; is linear.

If K CR"™ and L € R™ are polyhedra, we say that a map f : K — L is piecewise linear if the underlying
map f: K — R™ is piecewise linear.



Remark 7. Let f : K — L be a piecewise linear homeomorphism between polyhedra. Then the inverse map
f~': L — K is again piecewise linear. To see this, choose any triangulation of K such that the restriction
of f to each simplex of the triangulation is linear. Taking the image under f, we obtain a triangulation of
L such that the restriction of f~! to each simplex is linear.

Remark 8. The collection of all polyhedra can be organized into a category, where the morphisms are
given by piecewise linear maps. This allows us to think about polyhedra abstractly, without reference to an
embedding into a Euclidean space: a pair of polyhedra K C R™ and L C R™ can be isomorphic even if
n # m.

Definition 9. Let M be a polyhedron. We will say that M is a piecewise linear manifold (of dimension n)
if, for every point x € M, there exists an open neighborhood U C M containing x and a piecewise linear
homeomorphism U ~ R".

Remark 10. Definition 9 can be rephrased so as to better resemble Definition 2. Namely, let M be a
topological manifold. We define a combinatorial structure on M to be a subsheaf OII\ZL C Oy with the
following property: for every point x € X, there exists an open embedding f : R® — M whose image
contains f, such that f* Of/lL C Ogn can be identified with the sheaf whose value on an open subset U C R™
consists of piecewise linear maps from U to R.

Every piecewise linear manifold M comes equipped with a combinatorial structure, where we define (‘JZL
to be the sheaf of piecewise linear maps on M with values in R. Conversely, if M is a topological manifold
endowed with a combinatorial structure, then by choosing sufficiently many sections fi, ..., fm € OFF(M)
we obtain an embedding M — R™ whose image is a polyhedron R™ (which is a piecewise linear manifold).
We can therefore regard the data of a piecewise linear manifold as equivalent to the data of a topological
manifold with a combinatorial structure.

Let K be a polyhedron containing a vertex x, and choose a triangulation of K containing x as a vertex
of the triangulation. The star of x is the union of those simplices of the triangulation which contain x. The
link of x consists of those simplices belonging to the star of x which do not contain x. We denote the link of
x by lk(z).

As a subset of K, the link lk(z) of = depends on the choice of triangulation of K. However, one
can show that as an abstract polyhedron, lk(z) is independent of the triangulation up to piecewise linear
homeomorphism. Moreover, lk(z) depends only on a neighborhood of = in K.

If K = R" and o € K is the origin, then the link lk(z) can be identified with the sphere S™~1 (which
can be regarded as a polyhedron via the realization S"~! ~ 9 A"). It follows that if K is any piecewise
linear n-manifold, then the link lk(z) is equivalent to S™~! for every point # € K. Conversely, if K is any
polyhedron such that every link in K is an (n — 1)-sphere, then K is a piecewise linear n-manifold. To see
this, we observe that for each x € K, if we choose a triangulation of K containing = as a vertex, then the
star of x can be identified with the cone on lk(z). If lk(x) ~ S"~!, then the star of = is a piecewise linear
(closed) disk, so that x has a neighborhood which admits a piecewise linear homeomorphism to the open
disk in R"™.

We have proven the following:

Proposition 11. Let K be a polyhedron. The following conditions are equivalent:
(i) For each x € K, the link lk(x) is a piecewise linear (n — 1)-sphere.
(it) K is a piecewise linear n-manifold.

Remark 12. Very roughly speaking, we can think of a piecewise linear manifold M as a topological manifold
equipped with a triangulation. However, this is not quite accurate, since a polyhedron does not come
equipped with a particular triangulation. Instead, we should think of M as equipped with a distinguished
class of triangulations, which is stable under passing to finer and finer subdivisions.



Warning 13. Let K be a polyhedron whose underlying topological space is an n-manifold. Then K need
not be a piecewise linear n-manifold: it is generally not possible to choose local charts for K in a piecewise
linear fashion.

To get a feel for the sort of problems which might arise, consider the criterion of Proposition 11. To prove
that K is a piecewise linear n-manifold, we need to show that for each x € K, the link lk(z) is a (piecewise-
linear) m-sphere. Using the fact that K is a topological manifold, we deduce that H.(K, K — {z};Z) is
isomorphic to Z in degree n and zero elsewhere; this is equivalent to the assertion that 1k(z) has the homology
of an (n — 1)-sphere. Of course, this does not imply that lk(x) is itself a sphere. A famous counterexample
is due to Poincare: if we let I denote the binary icosahedral group, regarded as a subgroup of SU(2) ~ S3,
then the quotient P = SU(2)/I is a homology sphere which is not a sphere (since it is not simply connected).

The suspension P is a 4-dimensional polyhedron whose link is isomorphic to P at precisely two points,
which we will denote by z and y. However, 3P is not a topological manifold. To see this, we note that
the point x does not contain arbitrarily small neighborhoods U such that U — {z} is simply connected. In
other words, the failure of X P to be a manifold can be detected by computing the local fundamental group
of P —{x} near x (which turns out to be isomorphic to the fundamental group of P). However, if we apply
the suspension functor again, the same considerations do not apply: the space P is simply connected (by
van Kampen’s theorem). Surprisingly enough, it turns out to be a manifold:

Theorem 14 (Cannon-Edwards). Let P be a topological n-manifold which is a homology sphere. Then the
double suspension X2 P is homeomorphic to an (n + 2)-sphere.

In particular, if we take P to be the Poincare homology sphere, then there is a homeomorphism 32P ~ S5,
However, 2P is not a piecewise linear manifold: it contains two points whose links are given by P, which
is not even a topological 4-manifold (let alone a piecewise linear 4-sphere).

The upshot of Warning 13 is that a topological manifold M (such as the 5-sphere) admits triangulations
which are badly behaved, in the sense that the underlying polyhedron is not locally equivalent to Euclidean
space. The situation is different if we require our triangulations to be compatible with a smooth structure
on M. We will take this point up in the next lecture.



