Product Structure Theorem: First Steps (Lecture 19)
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In the last lecture, we saw that the connectivity properties of the map PL(m)/O(m) — PL(m+1)/O(m+
1) could be phrased geometrically as follows:

Theorem 1 (Product Structure Theorems). Let M be a PL manifold of dimension m, let K C M be a
closed subpolyhedron, and suppose we are given a smooth structure on M X R which is the product of a smooth
structure on M with the standard smooth structure on R in a neighborhood of K x R. Then, after modifying
the smooth structure by a suitable PD isotopy which is trivial in a neighborhood of K X R, we can arrange
that the smooth structure on M X R is the product of a smooth structure on M with the standard smooth
structure on R. The same result holds if we replace R by [0, 1].

Our goal in the next few lectures is to sketch a proof of this result. The argument is essentially the same
whether we use R or [0, 1]; we will therefore switch from one case to the other as convenient. To simplify
the exposition, we will assume that K = (). The case where K is nonempty can be treated by more careful
versions of the same arguments.

To begin, let us assume that we are given a smooth structure on the product M x [0, 1]. Let X = M x 0, 1],
and let 7 : X — [0, 1] denote the projection. The easiest case of Theorem 1 is the following:

Lemma 2. Theorem 1 is true if m is a smooth submersion.

Proof. If 7 is a smooth submersion, then it exhibits X as a smooth fiber bundle over [0,1]. Let My = M,
equipped with the smooth structure given by the identification My ~ 7=1{0}. We have a diffeomorphism
f i+ X ~ My x[0,1].. In other words, X is diffeomorphic to a product with [0,1]. This is not quite the
full strength of Theorem 1: we must show that this diffeomorphism can be chosen to be PD isotopic to the
identity map on X. Let us think of f as a PD family {f; : M — Mo};e0,1) of PD homeomorphisms from A
to Mo, where fo is the identity. Define a PD isotopy {h; : X — Mo x [0, 1]}¢¢[o,1) by the formula

_ (fsft(m),s) ift<s
fulm-s) = {(fo(m),s) it > s

Then hyg is the diffeomorphism f, which gives the original smooth structure on X. The map h; is the identity
map X ~ M x [0,1] = My x [0,1], which gives a product smooth structure on X. O

If 7 is a smooth map, then we can test whether or not 7 is a submersion by checking whether the
derivative of m does not vanish at any point. Of course, the condition that 7 is smooth is very strong: in our
situation, we only know that 7 is piecewise linear with respect to some Whitehead compatible triangulation
of X. In other words, we know that 7 is piecewise differentiable on X: that is, there is a smooth triangulation
of X such that 7 is differentiable on each simplex. In this case, it is still possible to salvage something of
the theory of derivatives:

Definition 3. Let X be a smooth manifold, and let f : X — R be a piecewise differentiable map. (In the
case of interest, X is a smoothing of M xR for some PL manifold M, and f is the projection onto the second
factor.) Let © € X be a point and let v be a tangent vector to X and x. We define D, (f) to be the minimum
value of the derivatives D, (f|o), where o ranges over all simplices containing x of some triangulation of X
for which f is smooth on each simplex.



The map (v, z) — D, (f) is not generally continuous if f is not a smooth function. However, it is lower
semicontinuous. In other words, for every real number ¢, the subset of the tangent bundle Tx consisting of
pairs (x,v) for which D,(f) > € is an open set. We will say that a tangent vector v to X is regular for f if
D,(f) > 0. Lower semicontinuity guarantees that the set of regular tangent vectors is open in T'x.

Definition 4. Let X be a smooth manifold and f : X — R a piecewise differentiable function. We will say
that f is regular if, for every point x € X, there exists a tangent vector v € T'x , such that (x,v) is regular
(in other words, such that D, (f) > 0).

Example 5. If f is smooth, then f is regular if and only if it is a smooth submersion.

Lemma 6. Let X be a smooth manifold and f : X — R a regular piecewise differentiable function. Then
there exists a smooth tangent field v : X — Tx such that, for every x € X, the tangent vector v(z) is regular

for f.

Proof. Since f is regular, we can find for each z a tangent vector w, at z such that D, (f) > 0. Let
vy : X — Tx be a smooth tangent field such that v,(z) = w,. Since the collection of regular tangent
vectors is open, there exists an open neighborhood U, of z such that v, (y) is f-regular for y € U,. Since
X is paracompact, the open covering {U, }.cx has a locally finite refinement. Choose a smooth partition of
unity ; subordinate to this refinement, so that each t; is supported in U,,. Then the smooth vector field
v =Y, ¥iv,, has the desired property. O

In the situation of Lemma 6, we will say that the vector field f is transverse to f.

Lemma 7. Let f : X — R be a piecewise differentiable function, and let v : X — Tx be a smooth vector
field which is transverse to f. Then for any continuous function € : X — Rsq, there exists a smooth map
g: X — R such that

Dv(z)(g) > Dv(m)(f) - 6(37)
9(x) = f(z) < e(z).

(Choosing € sufficiently small will guarantee that v is also transverse to g.)

Proof. Choose a partition of unity ¥; on X subordinate to a locally finite cover of X by compact sets K;,
each of which is contained in a coordinate chart U;. Suppose we are given smooth maps g; : U; — R, and
define g by the formula

9= Z Vigi-

Then g(z) — f(z) < e(x) will be satisfied provided that g;(z) — f(z) < e(z) holds for x € U;. The other
condition is a bit more subtle: we have
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where C; > 0 is an upper bound for the compactly supported function D, ,);. If the inequalities

Dv(w)(gl) > Dv(a,)(f) - i;)

> Clole) - f@) < 2
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hold for z € Kj;, then g will satisfy the desired inequality. Since only finitely many intersections K; N K; are
nonempty, the latter inequality can be achieved by ensuring that each g; is a close approximation to f on
K;.

In other words, we may reduce to the case where X = R", and the inequalities

D'u(z)(g) > Dv(a:)(f) - €($)
9(z) — f(z) < e().

only need to be satisfied when z lies in some compact subset K C R™. Let k : R® — ]R>o be a smooth

function with total integral 1, which is supported in a small ball of radius é. Define g(x f fly —y).
Then g is a smooth function. It is not difficult to see that the conditions

Dv(m)(g) > Dv(x)(f) - 6(.’1))
g(z) = f(z) < ().
will be satisfied on any compact subset K, provided that ¢ is chosen sufficiently small. O
We now come to the main goal of this lecture:

Proposition 8. Theorem 1 is true in the case where the projection m : M x R — R is a regular (but not
necessarily smooth with respect the smoothing of M x R).

Proof. We will show that, after adjusting the smooth structure on M x R by a PD isotopy, we can arrange
that m is a smooth submersion; the desired result will then follow from Lemma 2. First, choose a smooth
Riemannian metric on X = M x R. Let € : X — R<( be a smooth function such that each of the closed
balls B,(;)(z) € X of radius ¢(z) around z is compact. Let v : X — T'x be a smooth tangent field which is
transverse to 7. Rescaling v, we can assume that each v(x) has unit length.

Choose a smooth function ¢ : X — R<( such that

Dv(m) (f) > 5(1’)

for € X. Let 0’ : X — Ry be another smooth function such that if d(z,y) <€, then §'(z) < d(y). Using
the previous Lemma, we can choose a smooth map g : X — R with the following properties:

Dv(x)(g) > @

m(x) — g(z) < e(x) 6/(;).

In particular, A(z) = Dy () (g) is a smooth function of = satisfying m(z) —g(x) < e(x)A(y) whenever d(z,y) <

e(x).
Since v is a unit vector field and each of the e(z)-balls around z is compact, the flow along the vector
field v gives a well-defined map

F:{(z,t)e X xR:|t| < e(x)} — X.

Moreover, for fixed x, F'(x,t) stays in a ball of radius € around x. It follows that the t-derivative of g(F(z,t))
coincides with A(F(z,t)) > £ L) g( *) . Consequently, for s € [0,1], we can find a unique ¢ = t(z, s) such that
g(F(z,t)) — g(x) = s(n(z) — ( )). We now define a map hs : X — X by the formula

hG(x) = F(I,t(l‘, 5))

The family {hs : X — X},¢[0,1] is then a PD isotopy from X to itself, where hg is the identity and goh; = f,
so that f is smooth with respect to the smooth structure on X determined by h;. O



