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Our goal in this lecture is to study the relative connectivity properties of the quotient spaces PL(m)/O(m).
Our basic observation is the following:

Remark 1. Let K ⊆ Rm be a closed subpolyhedron. Then the mapping space (PL(m)/O(m))K can be
identified with the simplicial set Smooth(K) of germs of smooth structures on Rm near K. This follows
from the main result of the last lecture, together with the observation that the standard PL structure on
Rm determines a constant map χ : Rm → BPL(m).

Proposition 2. Fix an integer m ≥ 0. The following conditions are equivalent:

(1) All homotopy fibers of the map PL(m)/O(m)→ PL(m+ 1)/O(m+ 1) are (m− 1)-connected.

(2) All homotopy fibers of the map BO(m)→ BO(m+ 1)×BPL(m+1) BPL(m) are (m− 1)-connected.

(3) The following weak product structure theorem holds:

(∗) Let M be a PL manifold of dimension m, let K ⊆ M be a closed subpolyhedron, and suppose we
are given a smooth structure on M ×R which is the product of a smooth structure on M with the
standard smooth structure on R in a neighborhood of K × R. Then, after modifying the smooth
structure by a suitable PD isotopy which is trivial in a neighborhood of K × R, we can arrange
that the smooth structure on M ×R is the product of a smooth structure on M with the standard
smooth structure on R.

Proof. We have a natural transformation of homotopy fiber sequences

PL(m)/O(m) //

φ

��

BO(m) //

ψ

��

BPL(m)

��
PL(m+ 1)/O(m+ 1) θ// BO(m+ 1)×BPL(m+1) BPL(m) // BPL(m).

It follows that every homotopy fiber of φ is also a homotopy fiber of ψ, so the implication (2)⇒ (1) is clear.
To prove the converse, it suffices to show that every homotopy fiber of ψ is equivalent to a homotopy fiber
of φ. This will follow if the map θ is surjective on π0. This surjectivity follows from the fiber sequence, since
BPL(m) is connected.

We now prove that (2) ⇒ (3). In the situation of (3), the smooth structure on M × R is classified by a
map M ×R→ BO(m+ 1)×PL(m+1) PL(m). Finding a PD isotopy to a smooth structure on M ×R which
is a product with R is equivalent to solving the lifting problem

BO(m)

��
M × R //

55kkkkkkkk
BO(m)×BPL(m) BPL(m).
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If we wish to do achieve this via an isotopy fixed near K, then we must solve instead a relative lifting problem
of the form

K × R

��

// BO(m)

j

��
M × R //

44jjjjjjjjj
BO(m+ 1)×BPL(m+1) BPL(m).

This is a purely homotopy theoretic problem; we may therefore replace the inclusion K × R ⊆ M × R by
K ⊆M . Since M is a PL m-manifold, it can be obtained from K by successive cell attachments where the
cells have dimension ≤ m. Working cell-by-cell, we are reduced to solving lifting problems of the form

∂ Dk

��

// BO(m)

ψ

��
Dk //

55kkkkkkkkk
BO(m+ 1)×BPL(m+1) BPL(m)

where Dk indicates a disk of dimension ≤ k. The obstruction to solving such a problem is equivalent to the
vanishing of a class in πk−1 of a homotopy fiber F of ψ. This class automatically vanishes by virtue of our
assumption that F is (m− 1)-connected.

We now prove that (3)⇒ (1). We must show that every lifting problem of the form

∂ Dk

��

// PL(m)/O(m)

ψ

��
Dk //

66nnnnnnn
PL(m+ 1)/O(m+ 1)

has a solution, provided that k ≤ m. In this case, we can choose a PL embedding of ∂ Dk into Rm and
obtain an equivalent lifting problem

∂ Dk × R

��

// PL(m)/O(m)

ψ

��
Rm+1 //

55lllllll
PL(m+ 1)/O(m+ 1).

The diagram determines a smoothing of Rm+1 which is a product smoothing in a neighborhood of ∂ Dk×R,
and a solution to the indicated lifting problem is equivalent to giving a PD isotopy (fixed near ∂ Dk ×R) to
a product smoothing.

Remark 3. If the equivalent conditions of Proposition 2 are satisfied, then the map PL(m)/O(m) →
PL(m + 1)/O(m + 1) is surjective on π0 for m ≥ 0. Since PL(0)/O(0) = ∗ is connected, we it follows by
induction that PL(m)/O(m) is connected for each m. In other words, Euclidean space Rm admits a unique
smooth structure compatible with its standard PL structure, up to PD isotopy.

The connectivity estimate given in Proposition 2 is not the best possible. We now describe how to do
a little better. We need a variation on the main result of the last lecture, which applies to manifolds with
boundary.

Variant 4. Let M be a PL (m+ 1)-manifold with boundary ∂M . We can define the notion of a smoothing
of M as before. Smoothings of M can be organized into a simplicial set Smooth(M). Every smoothing of M
determines a smoothing of the boundary of M ; this is given by a Kan fibration Smooth(M)→ Smooth(∂M).
Given a smooth structure on the boundary of M , we denote the fiber of this map by Smooth(M ; ∂). Given
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such a smoothing of ∂M , we get a map ∂M → BO(m). Then, up to homotopy, smoothings of M compatible
with this smooth structure on ∂M are given by solutions to the lifting problem

∂M //

��

BO(m+ 1)

��
M //

88rrrrrr
BPL(m+ 1).

Smoothings of M itself (without boundary data) can be identified with solutions to the lifting problem of pairs

(BO(m+ 1), BO(m))

��
(M,∂M) //

55kkkkkkk
(BPL(m+ 1), BPL(m)).

Notation 5. Fix an integer m ≥ 0. We let ∆PL
m denote the homotopy fiber product

BPL(m)×hBPL(m+1) BPL(m) = BPL(m)×BPL(m+1){0} BPL(m+ 1)[0,1] ×BPL(m+1){1} BPL(m).

Similarly, define ∆O
m to be the homotopy fiber product

BO(m)×hBO(m+1) BO(m) = BO(m)×BO(m+1){0} BO(m+ 1)[0,1] ×BO(m+1){1} BO(m).

We have a Kan fibration ∆O → ∆PL. For every PL m-manifold M , the tangent microbundle to M × [0, 1]
and its boundary determines a map M → ∆PL

m . According to Variation 4, we can identify smoothings of
M × [0, 1] with solutions to the lifting problem

∆O
m

��
M

=={
{

{
{

// ∆PL
m .

The proof of Proposition 2 adapts without essential change to show the following:

Proposition 6. Fix an integer m ≥ 0. The following conditions are equivalent:

(1) Let F denote the homotopy fiber of the map ∆O
m → ∆PL

m . Then all PL(m)/O(m) → F are (m − 1)-
connected.

(2) All homotopy fibers of the map BO(m)→ ∆O
m ×∆P L

m
BPL(m) are (m− 1)-connected.

(3) The following strong product structure theorem holds:

(∗) Let M be a PL manifold of dimension m, let K ⊆ M be a closed subpolyhedron, and suppose we
are given a smooth structure on M × [0, 1] which is the product of a smooth structure on M with
the standard smooth structure on [0, 1] in a neighborhood of K × R. Then, after modifying the
smooth structure by a suitable PD isotopy which is trivial in a neighborhood of K × [0, 1], we can
arrange that the smooth structure on M × [0, 1] is the product of a smooth structure on M with
the standard smooth structure on [0, 1]

Remark 7. Let F be as in Proposition 6. Then the homotopy fibers of the map PL(m)/O(m) → F can
be identified with path spaces in the space in homotopy fibers of the map ψ : PL(m)/O(m) → PL(m +
1)/O(m + 1). Consequently, if we grant that the homotopy fibers of ψ are nonempty (which follows from
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Proposition 2 if m ≥ 0), then Proposition 6 asserts that the homotopy fibers of ψ are m-connected. This
is a slightly better connectivity estimate than we get from Proposition 2 itself, which is why the geometric
assertion of part (3) of Proposition 6 is called the strong product structure theorem to contrast it with
the corresponding weak product structure theorem of Proposition 2. However, the terminology is slightly
misleading: Proposition 6 does not quite formally imply Proposition 2, since it does not guarantee that the
homotopy fibers of ψ are nonempty. This missing strength is equivalent to the assertion of Remark 3: we
need to know that every smooth structure on Rm is PD isotopic to the product with R of a smooth structure
on Rm−1, and thus (using induction on m) PD isotopic to the standard smooth structure on Rm.
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