Product Structure Theorems (Lecture 18)

March 16, 2009

Our goal in this lecture is to study the relative connectivity properties of the quotient spaces PL(m)/O(m).
Our basic observation is the following:

Remark 1. Let K C R™ be a closed subpolyhedron. Then the mapping space (PL(m)/O(m))% can be
identified with the simplicial set Smooth(K) of germs of smooth structures on R™ near K. This follows
from the main result of the last lecture, together with the observation that the standard PL structure on
R™ determines a constant map y : R™ — BPL(m).

Proposition 2. Fizx an integer m > 0. The following conditions are equivalent:
(1) All homotopy fibers of the map PL(m)/O(m) — PL(m+1)/O(m + 1) are (m — 1)-connected.
(2) All homotopy fibers of the map BO(m) — BO(m + 1) X gpr(m+1) BPL(m) are (m — 1)-connected.
(3) The following weak product structure theorem holds:

(x) Let M be a PL manifold of dimension m, let K C M be a closed subpolyhedron, and suppose we
are given a smooth structure on M x R which is the product of a smooth structure on M with the
standard smooth structure on R in a neighborhood of K x R. Then, after modifying the smooth
structure by a suitable PD isotopy which is trivial in a neighborhood of K x R, we can arrange
that the smooth structure on M X R is the product of a smooth structure on M with the standard
smooth structure on R.

Proof. We have a natural transformation of homotopy fiber sequences

PL(m)/O(m) BO(m) BPL(m)
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PL(m +1)/O(m + 1) — BO(m + 1) X gpL(m+1) BPL(m) — BPL(m).

It follows that every homotopy fiber of ¢ is also a homotopy fiber of 1, so the implication (2) = (1) is clear.
To prove the converse, it suffices to show that every homotopy fiber of ¥ is equivalent to a homotopy fiber
of ¢. This will follow if the map 6 is surjective on my. This surjectivity follows from the fiber sequence, since
BPL(m) is connected.

We now prove that (2) = (3). In the situation of (3), the smooth structure on M x R is classified by a
map M x R — BO(m +1) X pr(m+1) PL(m). Finding a PD isotopy to a smooth structure on M x R which
is a product with R is equivalent to solving the lifting problem

BO(m)
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M x R —= BO(m) X ppp(m) BPL(m).



If we wish to do achieve this via an isotopy fixed near K, then we must solve instead a relative lifting problem
of the form
K xR BO(m)
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M x R —> BO(m + 1) Xppr(m+1) BPL(m).

This is a purely homotopy theoretic problem; we may therefore replace the inclusion K x R C M x R by
K C M. Since M is a PL m-manifold, it can be obtained from K by successive cell attachments where the
cells have dimension < m. Working cell-by-cell, we are reduced to solving lifting problems of the form

9 D¥ BO(m)
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L BO(m + 1) XBPL(m+1) BPL(m)

where D* indicates a disk of dimension < k. The obstruction to solving such a problem is equivalent to the
vanishing of a class in m_1 of a homotopy fiber F' of . This class automatically vanishes by virtue of our
assumption that F' is (m — 1)-connected.

We now prove that (3) = (1). We must show that every lifting problem of the form

9 Dk ———= PL(m)/O(m)
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Dk —» PL(m+1)/O(m+1)

has a solution, provided that k& < m. In this case, we can choose a PL embedding of d D* into R™ and
obtain an equivalent lifting problem

dDF x R —— PL(m)/O(m)
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RMH > PL(m +1)/O(m + 1).
The diagram determines a smoothing of R™* which is a product smoothing in a neighborhood of  D* x R,
and a solution to the indicated lifting problem is equivalent to giving a PD isotopy (fixed near & D* x R) to
a product smoothing. O

Remark 3. If the equivalent conditions of Proposition 2 are satisfied, then the map PL(m)/O(m) —
PL(m+ 1)/0O(m + 1) is surjective on 7o for m > 0. Since PL(0)/O(0) = * is connected, we it follows by
induction that PL(m)/O(m) is connected for each m. In other words, Euclidean space R™ admits a unique
smooth structure compatible with its standard PL structure, up to PD isotopy.

The connectivity estimate given in Proposition 2 is not the best possible. We now describe how to do
a little better. We need a variation on the main result of the last lecture, which applies to manifolds with
boundary.

Variant 4. Let M be a PL (m + 1)-manifold with boundary O M. We can define the notion of a smoothing
of M as before. Smoothings of M can be organized into a simplicial set Smooth(M). Every smoothing of M
determines a smoothing of the boundary of M ; this is given by a Kan fibration Smooth(M) — Smooth(d M).
Given a smooth structure on the boundary of M, we denote the fiber of this map by Smooth(M;0). Given



such a smoothing of O M, we get a map O M — BO(m). Then, up to homotopy, smoothings of M compatible
with this smooth structure on @ M are given by solutions to the lifting problem

oM BO(m +1)
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M~—> BPL(m+1).

Smoothings of M itself (without boundary data) can be identified with solutions to the lifting problem of pairs

(BO(m+1),BO(m))
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(M, M) —> (BPL(m + 1), BPL(m)).
Notation 5. Fix an integer m > 0. We let AP'L denote the homotopy fiber product
BPL(m) X%’PL(m+1) BPL(m) = BPL(m) X gpr(m41y0r BPL(m + 1o-u X BpL(m+1)1r BPL(m).
Similarly, define A9 to be the homotopy fiber product
BO(m) X611y BO(m) = BO(m) X gomi1yor BO(m + DO g0y BO(m).

We have a Kan fibration A? — APL. For every PL m-manifold M, the tangent microbundle to M x [0, 1]
and its boundary determines a map M — APL. According to Variation 4, we can identify smoothings of
M x [0, 1] with solutions to the lifting problem

AO

m
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M —> APL,

The proof of Proposition 2 adapts without essential change to show the following:
Proposition 6. Fix an integer m > 0. The following conditions are equivalent:

(1) Let F denote the homotopy fiber of the map AS — APE. Then all PL(m)/O(m) — F are (m — 1)-
connected.

(2) All homotopy fibers of the map BO(m) — A9 Xare BPL(m) are (m — 1)-connected.
(3) The following strong product structure theorem holds:

(x) Let M be a PL manifold of dimension m, let K C M be a closed subpolyhedron, and suppose we
are given a smooth structure on M x [0,1] which is the product of a smooth structure on M with
the standard smooth structure on [0,1] in a neighborhood of K x R. Then, after modifying the
smooth structure by a suitable PD isotopy which is trivial in a neighborhood of K x [0,1], we can
arrange that the smooth structure on M x [0,1] is the product of a smooth structure on M with
the standard smooth structure on [0, 1]

Remark 7. Let F' be as in Proposition 6. Then the homotopy fibers of the map PL(m)/O(m) — F can
be identified with path spaces in the space in homotopy fibers of the map ¢ : PL(m)/O(m) — PL(m +
1)/O(m 4+ 1). Consequently, if we grant that the homotopy fibers of ¢ are nonempty (which follows from



Proposition 2 if m > 0), then Proposition 6 asserts that the homotopy fibers of ¢ are m-connected. This
is a slightly better connectivity estimate than we get from Proposition 2 itself, which is why the geometric
assertion of part (3) of Proposition 6 is called the strong product structure theorem to contrast it with
the corresponding weak product structure theorem of Proposition 2. However, the terminology is slightly
misleading: Proposition 6 does not quite formally imply Proposition 2, since it does not guarantee that the
homotopy fibers of ¢ are nonempty. This missing strength is equivalent to the assertion of Remark 3: we
need to know that every smooth structure on R™ is PD isotopic to the product with R of a smooth structure
on R™™ ! and thus (using induction on m) PD isotopic to the standard smooth structure on R™.



