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Recall that our goal is to prove the following result:

Theorem 1. Let M be a PL manifold and K ⊆ M a closed subpolyhedron. Then the above construction
determines a homotopy equivalence from the simplicial set Smooth(K) of smooth structures on M to the
simplicial set

BO(m)K ×BPL(m)K {χ|K}

of liftings of χ|K.

Lemma 2. Theorem 1 is true when K consists of a single simplex.

Proof. Choose a point v ∈ K. Restriction to v determines a commutative diagram

Smooth(K) //

��

Smooth({v})

��
BO(m)K ×BPL(m)K ∗ // BO(m)×BPL(m) ∗.

The right vertical map is an isomorphism of simplicial sets, and the bottom horizontal map is a homotopy
equivalence because the inclusion {v} ↪→ K is a homotopy equivalence. Consequently, it will suffice to show
that the restriction map r : Smooth(K)→ Smooth({v}) is a trivial Kan fibration. In other words, we must
show that every lifting problem of the form

∂∆n
f //

��

Smooth(K)

��
∆n

f //

F
rrrrrr

Smooth({v})

has a solution. The map f determines a smooth structure on U ×∂∆n (fibered over ∂∆n), where U is some
neighrbood of K in M . Similarly, g determines a smooth structure on V ×∆n, where V is a neighborhood
of v in M ; without loss of generality we may assume that V ⊆ U . Since r is a Kan fibration, we are free to
replace g by any map which is homotopic (relative to the boundary ∂∆n); we may therefore assume that the
smooth structure is a product of the smooth structure determined by g| ∂∆n over a collar C = ∂∆n× [0, 1)
of ∂∆n in ∆n. This smooth structure therefore extends over U , so we obtain a smooth structure S on
W = (U × C)

∐
V×C(V ×∆n).

Choose a PL isotopy ht of M supported in U from the identity idM to a map h1 which carries ∆n into
V . Let χ : ∆n → [0, 1] be the map which is equal to 1 on ∆n −C and equal to the projection C → [0, 1) on
C. The map (x, z) 7→ (hχ(z)(x), z) determines a PL map H : M ×∆n →M ×∆n. Let W ′ = H−1(W ). Our
smooth structure on W determines a smooth structure on H−1(W ), which contains K ×∆n and therefore
determines a map F : ∆n → Smooth(K). It is easy to see that this map has the desired properties.
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Now fix a triangulation S of the PL manifold M . We prove the following:

Lemma 3. Let K ⊆ M be a finite union of simplices of the triangulation S. Then Theorem 1 is true for
K.

Proof. We use induction on the number of simplices of S which belong to K. If K is empty, there is nothing
to prove. Otherwise, choose a simplex σ belonging to K having maximal dimension, so we can write K as a
pushout

∂ σ //

��

σ

��
K0

// K.

The theorem holds for ∂ σ and K0 by the inductive hypothesis, and it holds for σ by Lemma 2. We have
diagrams

Smooth(K) //

��

Smooth(K0)

��

BO(m)K ×BPL(m)K ∗ //

��

BO(m)K0 ×BPL(m)K0 ∗

��
Smooth(σ) // Smooth(∂ σ) BO(m)σ ×BPL(m)σ ∗ // BO(m)∂ σ ×BPL(m)∂ σ ∗.

The square on the right is a homotopy pullback square since the diagram above is a homotopy pushout
square of polyhedra. The square on the left is a homotopy pullback square since it is a pullback square in
which each of the morphisms is a Kan fibration (by the main result of last time). We therefore have a map of
homotopy pullback squares which induces a homotopy equivalence everywhere except perhaps in the upper
left hand corner. It follows that it induces a homotopy equivalence in the upper left hand corner as well:
that is, the map Smooth(K)→ BO(m)K ×BPL(m)K ∗ is a homotopy equivalence as desired.

We can now prove Proposition 1 in general. Let K be an arbitrary closed subpolyhedron of M (for
example, M itself). We can choose a filtration of K

K0 ⊆ K1 ⊆ . . .

with K =
⋃
iKi, where each Ki is a finite subpolyhedron. We have a homotopy equivalence of towers

{Smooth(Ki)} → {BO(m)Ki ×BPL(m)Ki ∗}. All of the transition maps in these towers are Kan fibrations
(for the left tower, this follows from the main result of last time; for the right tower, it follows from the
observation that each map of PL singular complexes SingPL• Xi → SingPL• Xi+1 is a monomorphism of
simplicial sets). It follows that the homotopy inverse limits of these towers can be identified with the
ordinary inverse limits, so we get a homotopy equivalence

Smooth(K) ' lim←− Smooth(Ki) ' lim←−BO(m)Ki ×BPL(m)Ki ∗ ' BO(m)K ×BPL(m)K ∗.

This completes the proof of Theorem 1.
We can informally summarize Theorem 1 by saying that smooth structures on a PL manifold M can be

identified with liftings of the canonical map χ : M → BPL(m) to a map χ̃ : M → BO(m). More precisely,
we get a bijection of the set of homotopy classes of such liftings with the set π0 Smooth(M). It is therefore
of interest to describe the latter set more explicitly. In other words, we ask the following question: given two
smooth structures s0 and s1 (compatible with the given PL structure) on M , when do they belong to the
same connected component of Smooth(M)? This is true if and only if s0 and s1 can be joined by an edge in
Smooth(M). In other words, if and only if there exists a PD homeomorphism M × [0, 1] → N (compatible
with the projection to [0, 1]), where p : N → [0, 1] is a fiber bundle of smooth manifolds. In this case, we can
identify N with the trivial fiber bundle N0 × [0, 1], where N0 = p−1{0} is the smooth manifold determined
by the smoothing s0. We can summarize the situation as follows:
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Claim 4. Let M be a PL manifold equipped with a Whitehead compatible smooth structure s0. Then another
smooth structure s1 is equivalent to s0 (in other words, it belongs to the same connected component of
Smooth(M)) if and only if there exists a PD isotopy h : M × [0, 1] → M , where h0 = idM and s1 is the
smooth structure obtained by pulling back s0 along the homeomorphism h1.

Variant 5. Suppose that M is a PL manifold, K a closed subset, and the smooth structures s0 and s1
coincide in a neighborhood of K. Then s0 and s1 belong to the same connected component of the fiber
Smooth(M)×Smooth(K) ∗ if and only if there exists a PD isotopy ht as above, which is constant in a neigh-
borhood of K. This can be proven by essentially the same argument, together with the smooth version of the
isotopy extension theorem.
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