Smoothings and Microbundles (Lecture 15)

March 11, 2009

We now return to the problem of smoothing piecewise linear manifolds. Recall the diagram

$$\operatorname{Man}_{PL}^m \xrightarrow{\theta} \operatorname{Man}_{PD}^m \xrightarrow{\theta'} \operatorname{Man}_{\operatorname{sm}}^m$$

of Lecture 6. We have shown that θ' is a trivial Kan fibration, so that we can also regard $\operatorname{Man}_{PD}^m$ as a classifying space for smooth manifolds. Then we can regard θ as assigning to each smooth manifold an underlying PL manifold. The fiber of θ over a vertex of $\operatorname{Man}_{PL}^m$ corresponding to a PL manifold $M \subseteq \mathbb{R}^{\infty}$ can be viewed as a "space" of smooth structures on M. The following guarantees that these "spaces" of smooth structures are well-behaved:

Lemma 1. The map θ is a Kan fibration.

In fact, we will factor θ in two steps. Let $\operatorname{Man}_{PD'}^m$ denote the simplicial set whose k-simplices are fiber bundles of PL manifolds $E \to \Delta^k$ where $E \subseteq \Delta^k \times \mathbb{R}^\infty$, together with a Whitehead compatible smooth structure on E such that the map $E \to \Delta^k$ is a submersion (and therefore a fiber bundle) in the smooth category. This differs only slightly from our definition of $\operatorname{Man}_{PD}^m$, in that we do not require an additional smooth embedding of E into $\Delta^k \times \mathbb{R}^\infty$. By general position arguments, this difference is immaterial: the map $\operatorname{Man}_{PD}^m \to \operatorname{Man}_{PD'}^m$ is a trivial Kan fibration. Consequently, it suffices to prove the following analogue of Lemma 1:

Lemma 2. The map $\operatorname{Man}_{PD'}^m \to \operatorname{Man}_{PL}^m$ is a Kan fibration.

Proof. We must show that we can solve lifting problems of the form

$$\Lambda_i^n \longrightarrow \operatorname{Man}_{PD'}^m \\
\downarrow \qquad \qquad \downarrow \\
\Delta^n \longrightarrow \operatorname{Man}_{PL}^m.$$

In more concrete terms: we are given a bundle of PL manifolds $K \subseteq \Delta^n \times \mathbb{R}^\infty$, and a PD homeomorphism of the subbundle $K_0 = K \times_{\Delta^n} \Lambda_i^n$ with a smooth fiber bundle $M_0 \to \Lambda_i^n$. We need to construct the following:

- (1) A fiber bundle $M \to \Delta^n$ of smooth manifolds extending the given bundle $M_0 \to \Lambda_i^n$.
- (2) A PD homeomorphism $K \to M$ which commutes with the projection to Δ^n .

To satisfy (1), we observe that Λ_i^n is trivial, so we can write M_0 as a product $\Lambda_i^n \times N$ for some smooth manifold N. We then define $M = \Delta^n \times N$. To construct (2), we observe that Δ^n is PL homeomorphic to $\Lambda_i^n \times \Delta^1$. We can lift this to a PL homeomorphism $K \simeq K_0 \times \Delta^1$. We now have a unique map $K \to \Delta^n \times N$ which commutes with the projection to Δ^n , and such that the map $K \to N$ is given by the composition

$$K \simeq K_0 \times \Delta^1 \to K_0 \to M_0 \simeq N \times \Lambda_i^n \to N.$$

It is easy to see that this map is a PD homeomorphism.

Notation 3. Given a PL manifold M (which we implicitly assume to be given as a polyhedron in \mathbb{R}^{∞} , so that it defines a vertex of $\operatorname{Man}_{PL}^m$), we let $\operatorname{Smooth}(M)$ denote the fiber of the Kan fibration $\operatorname{Man}_{PD'}^m \to \operatorname{Man}_{PL}^m$ over M. The vertices of $\operatorname{Smooth}(M)$ are smooth structures on M which are Whitehead compatible with the given PL structure on M.

The theory of microbundles allows us to set up a local version of the same story. Namely, let BPL(m) denote the classifying space (= simplicial set) for PL microbundles of rank m constructed in Lecture 12: an n-simplex of BPL(m) is a microbundle $E \to \Delta^n$, where E is given as a subpolyhedron of $\Delta^n \times \mathbb{R}^{\infty}$. (The Kister-Mazur theorem, in its PL incarnation, allows us to identify this space with the classifying space of a simplicial group PL(m)).

Definition 4. Let E be a PL microbundle over a simplex Δ^n . Let us say that a *smoothing* of E is a smoothing of an open subset $U \subseteq E$ containing the zero section, so that the projection $U \to \Delta^n$ is submersive. We regard two smoothings as identical if they agree on a neighborhood of the zero section of E. Let X_{\bullet} be the simplicial set whose n-simplices are pairs (σ, S) , where σ is an n-simplex of BPL(m) and S is a smoothing of the associated microbundle $E \to \Delta^n$. There is an evident forgetful map $f: X_{\bullet} \to BPL(m)$.

We can regard the map f as a "local version" of the Kan fibration $\theta: \operatorname{Man}_{PD}^m \to \operatorname{Man}_{PL}^m$. A slight modification of the proof of Lemma 2 shows that f is also a Kan fibration.

Lemma 5. The vector bundle ζ over X_{\bullet} constructed above is universal: that is, it exhibits X_{\bullet} as a classifying space for vector bundles of rank m.

Proof. By an argument which should be familiar from previous lectures, it will suffice to prove the following: given a map $\chi_0: \partial \Delta^n \to X_{\bullet}$ and a vector bundle ζ' over Δ^n with an isomorphism $\alpha_0: \zeta' | \partial \Delta^n \simeq \chi_0^* \zeta$, we can extend χ_0 to a map $\chi: \Delta^n \to X_{\bullet}$ and α to an isomorphism $\zeta' \simeq \chi^* \zeta$.

Since Δ^n is contractible, we can assume that ζ' is a trivial bundle of rank m. The map χ_0 classifies a PL microbundle $E_0 \to \partial \Delta^n$ (together with an embedding $E_0 \hookrightarrow \partial \Delta^n \times \mathbb{R}^{\infty}$), and a smoothing S of a neighborhood U_0 of the zero section of E_0 . The map α_0 gives a trivialization of vertical tangent space to U_0 along the zero section. As we have seen, this is equivalent to trivializing U_0 as a smooth microbundle. We may therefore assume, after shrinking U, that $U_0 \simeq \partial \Delta^n \times \mathbb{R}^m$ as a smooth fiber bundle over $\partial \Delta^n$.

We wish to show that we can extend E_0 to a PL microbundle $E \to \Delta^n$ (which we can then embed in $\Delta^n \times \mathbb{R}^\infty$ using general position arguments) and U_0 to an open subset $U \subseteq E$ containing the zero section, equipped with a PD homeomorphism $U \to \mathbb{R}^m \times \Delta^n$. To construct this, choose a finite polyhedral neighborhood V of $\partial \Delta^n$ in Δ^n for which there exists a retraction $r: V \to \Delta^n$. Let V_0 denote the interior of V, and let V_0 be the restriction of V to V_0 , and let V_0 be the restriction of V to V_0 . Let V_0 denote the pushout

$$(r_0^* E_0) \coprod_{r_0^* U_0} (\Delta^n \times \mathbb{R}^\infty)$$

Over V, this set is equipped with a natural polyhedral structure by identifying it with an open subset of r^*E_0 . In particular, we get a PL structure on $E \times_{\Delta^n} \partial V \simeq (\partial V) \times \mathbb{R}^m$ which is Whitehead compatible with the smooth structure on \mathbb{R}^m . We now simply extend this to a triangulation of the smooth fiber bundle

$$E \times_{\Delta^n} (\Delta^n - V_0) \simeq \mathbb{R}^m \times (\Delta^n - V_0) \to \Delta^n - V_0$$

to obtain the desired PL microbundle E.

Since X_{\bullet} is classifying space for vector bundles, we will denote it by BO(m): it is homotopy equivalent to any other model for the classifying space BO(m) (for example, one constructed using the singular complex of the topological group O(m)). By construction, we have a Kan fibration $\theta_0: BO(m) \to BPL(m)$. Informally, we think of this as coming from a group homomorphism $O(n) \to PL(n)$. (In fact, we do have an evident morphism from O(n) to PL(n) as discrete groups: every orthogonal transformation of \mathbb{R}^n is in particular a piecewise linear homeomorphism.) The fiber of f is often denoted PL(n)/O(n); it can be thought of as the space of all smoothings of the PL manifold \mathbb{R}^n .

Let us adopt the following convention: if M is a polyhedron and Y_{\bullet} is a simplicial set, then a map from M into Y_{\bullet} means a map of simplicial sets from the PL singular complex $\operatorname{Sing}_{\bullet}^{PL} M$ into Y_{\bullet} . The collection of all such maps can itself be organized into a simplicial set which we will denote by Y_{\bullet}^{M} .

If M is a PL manifold of dimension m, then there is a natural map $\chi: M \to BPL(m)$: namely, it assigns to each n-simplex $\sigma: \Delta^n \to M$ the product $M \times \Delta^n$, regarded as a PL microbundle over Δ^n with the section supplied by σ . Any smoothing of M determines a smoothing of this PL microbundle: in other words, it allows us to produce a lifting

$$BO(m)$$

$$\downarrow$$

$$M \longrightarrow BPL(m)$$

Our goal in the next few lectures is to prove the converse. More precisely, we will show the following:

Theorem 6. Let M be a PL manifold. The above construction determines a homotopy equivalence from the simplicial set Smooth(M) of smooth structures on M to the simplicial set

$$BO(m)^M \times_{BPL(m)^M} \{\chi\}$$

of liftings of χ . In particular, M admits a smoothing if and only if there exists a commutative diagram

The virtue of this result is that it reduces the classification of smooth structures on M to a problem of homotopy theory. The existence of the arrow L can in principle be attacked by methods of obstruction theory. Namely, consider the fiber of the Kan fibration BO(m) - > BPL(m), which we will suggestively denote by PL(m)/O(m) (it can be thought of as the space of all smooth structures on the trivial PL microbundle $\mathbb{R}^m \to *$). Obstruction theory tells us that L will exist provided that a sequence of cohomology classes $H^k(M; \pi_{k-1}PL(m)/O(m))$ vanish Similarly, the uniqueness of L can be studied by computing cohomology groups of the form $H^k(M; \pi_k PL(m)/O(m))$. In particular, if the homotopy groups of PL(m)/O(m) vanish, then M admits an essentially unique smooth structure. This is what happens for $m \leq 3$, as we will see later.