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We now return to the problem of smoothing piecewise linear manifolds. Recall the diagram

ManmPL
θ→ ManmPD

θ′→ Manmsm

of Lecture 6. We have shown that θ′ is a trivial Kan fibration, so that we can also regard ManmPD as a
classifying space for smooth manifolds. Then we can regard θ as assigning to each smooth manifold an
underlying PL manifold. The fiber of θ over a vertex of ManmPL corresponding to a PL manifold M ⊆ R∞
can be viewed as a “space” of smooth structures on M . The following guarantees that these “spaces” of
smooth structures are well-behaved:

Lemma 1. The map θ is a Kan fibration.

In fact, we will factor θ in two steps. Let ManmPD′ denote the simplicial set whose k-simplices are fiber
bundles of PL manifolds E → ∆k where E ⊆ ∆k × R∞, together with a Whitehead compatible smooth
structure on E such that the map E → ∆k is a submersion (and therefore a fiber bundle) in the smooth
category. This differs only slightly from our definition of ManmPD, in that we do not require an additional
smooth embedding of E into ∆k × R∞. By general position arguments, this difference is immaterial: the
map ManmPD → ManmPD′ is a trivial Kan fibration. Consequently, it suffices to prove the following analogue
of Lemma 1:

Lemma 2. The map ManmPD′ → ManmPL is a Kan fibration.

Proof. We must show that we can solve lifting problems of the form

Λni //

��

ManmPD′

��
∆n // ManmPL .

In more concrete terms: we are given a bundle of PL manifolds K ⊆ ∆n×R∞, and a PD homeomorphism of
the subbundle K0 = K ×∆n Λni with a smooth fiber bundle M0 → Λni . We need to construct the following:

(1) A fiber bundle M → ∆n of smooth manifolds extending the given bundle M0 → Λni .

(2) A PD homeomorphism K →M which commutes with the projection to ∆n.

To satisfy (1), we observe that Λni is trivial, so we can write M0 as a product Λni × N for some smooth
manifold N . We then define M = ∆n × N . To construct (2), we observe that ∆n is PL homeomorphic to
Λni ×∆1. We can lift this to a PL homeomorphism K ' K0×∆1. We now have a unique map K → ∆n×N
which commutes with the projection to ∆n, and such that the map K → N is given by the composition

K ' K0 ×∆1 → K0 →M0 ' N × Λni → N.

It is easy to see that this map is a PD homeomorphism.
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Notation 3. Given a PL manifold M (which we implicitly assume to be given as a polyhedron in R∞, so that
it defines a vertex of ManmPL), we let Smooth(M) denote the fiber of the Kan fibration ManmPD′ → ManmPL
over M . The vertices of Smooth(M) are smooth structures on M which are Whitehead compatible with the
given PL structure on M .

The theory of microbundles allows us to set up a local version of the same story. Namely, let BPL(m)
denote the classifying space (= simplicial set) for PL microbundles of rank m constructed in Lecture 12: an
n-simplex of BPL(m) is a microbundle E → ∆n, where E is given as a subpolyhedron of ∆n × R∞. (The
Kister-Mazur theorem, in its PL incarnation, allows us to identify this space with the classifying space of a
simplicial group PL(m)).

Definition 4. Let E be a PL microbundle over a simplex ∆n. Let us say that a smoothing of E is a smoothing
of an open subset U ⊆ E containing the zero section, so that the projection U → ∆n is submersive. We
regard two smoothings as identical if they agree on a neighborhood of the zero section of E. Let X• be the
simplicial set whose n-simplices are pairs (σ, S), where σ is an n-simplex of BPL(m) and S is a smoothing
of the associated microbundle E → ∆n. There is an evident forgetful map f : X• → BPL(m).

We can regard the map f as a “local version” of the Kan fibration θ : ManmPD → ManmPL. A slight
modification of the proof of Lemma 2 shows that f is also a Kan fibration.

Lemma 5. The vector bundle ζ over X• constructed above is universal: that is, it exhibits X• as a classifying
space for vector bundles of rank m.

Proof. By an argument which should be familiar from previous lectures, it will suffice to prove the following:
given a map χ0 : ∂∆n → X• and a vector bundle ζ ′ over ∆n with an isomorphism α0 : ζ ′| ∂∆n ' χ∗0ζ, we
can extend χ0 to a map χ : ∆n → X• and α to an isomorphism ζ ′ ' χ∗ζ.

Since ∆n is contractible, we can assume that ζ ′ is a trivial bundle of rank m. The map χ0 classifies
a PL microbundle E0 → ∂∆n (together with an embedding E0 ↪→ ∂∆n × R∞), and a smoothing S of a
neighborhood U0 of the zero section of E0. The map α0 gives a trivialization of vertical tangent space to U0

along the zero section. As we have seen, this is equivalent to trivializing U0 as a smooth microbundle. We
may therefore assume, after shrinking U , that U0 ' ∂∆n × Rm as a smooth fiber bundle over ∂∆n.

We wish to show that we can extend E0 to a PL microbundle E → ∆n (which we can then embed
in ∆n × R∞ using general position arguments) and U0 to an open subset U ⊆ E containing the zero
section, equipped with a PD homeomorphism U → Rm×∆n. To construct this, choose a finite polyhedral
neighborhood V of ∂∆n in ∆n for which there exists a retraction r : V → ∆n. Let V0 denote the interior of
V , and let r0 be the restriction of r to V0, and let ∂ V = V − V0. Let E denote the pushout

(r∗0E0)
∐
r∗0U0

(∆n × R∞)

Over V , this set is equipped with a natural polyhedral structure by identifying it with an open subset of
r∗E0. In particular, we get a PL structure on E×∆n ∂ V ' (∂ V )×Rm which is Whitehead compatible with
the smooth structure on Rm. We now simply extend this to a triangulation of the smooth fiber bundle

E ×∆n (∆n − V0) ' Rm×(∆n − V0)→ ∆n − V0

to obtain the desired PL microbundle E.

Since X• is classifying space for vector bundles, we will denote it by BO(m): it is homotopy equivalent to
any other model for the classifying space BO(m) (for example, one constructed using the singular complex of
the topological group O(m)). By construction, we have a Kan fibration θ0 : BO(m)→ BPL(m). Informally,
we think of this as coming from a group homomorphism O(n) → PL(n). (In fact, we do have an evident
morphism from O(n) to PL(n) as discrete groups: every orthogonal transformation of Rn is in particular a
piecewise linear homeomorphism.) The fiber of f is often denoted PL(n)/O(n); it can be thought of as the
space of all smoothings of the PL manifold Rn.
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Let us adopt the following convention: if M is a polyhedron and Y• is a simplicial set, then a map from
M into Y• means a map of simplicial sets from the PL singular complex SingPL• M into Y•. The collection
of all such maps can itself be organized into a simplicial set which we will denote by YM• .

If M is a PL manifold of dimension m, then there is a natural map χ : M → BPL(m): namely, it assigns
to each n-simplex σ : ∆n →M the product M×∆n, regarded as a PL microbundle over ∆n with the section
supplied by σ. Any smoothing of M determines a smoothing of this PL microbundle: in other words, it
allows us to produce a lifting

BO(m)

��
M

::v
v

v
v

v
// BPL(m).

Our goal in the next few lectures is to prove the converse. More precisely, we will show the following:

Theorem 6. Let M be a PL manifold. The above construction determines a homotopy equivalence from the
simplicial set Smooth(M) of smooth structures on M to the simplicial set

BO(m)M ×BPL(m)M {χ}

of liftings of χ. In particular, M admits a smoothing if and only if there exists a commutative diagram

BO(m)

��
M

L

::v
v

v
v

v χ // BPL(m).

The virtue of this result is that it reduces the classification of smooth structures on M to a problem of
homotopy theory. The existence of the arrow L can in principle be attacked by methods of obstruction theory.
Namely, consider the fiber of the Kan fibration BO(m)− > BPL(m), which we will suggestively denote by
PL(m)/O(m) (it can be thought of as the space of all smooth structures on the trivial PL microbundle
Rm → ∗). Obstruction theory tells us that L will exist provided that a sequence of cohomology classes
Hk(M ;πk−1PL(m)/O(m)) vanish Similarly, the uniqueness of L can be studied by computing cohomology
groups of the form Hk(M ;πkPL(m)/O(m)). In particular, if the homotopy groups of PL(m)/O(m) vanish,
then M admits an essentially unique smooth structure. This is what happens for m ≤ 3, as we will see later.
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