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Our goal in this lecture is to carry out the main step in the proof of the Kister-Mazur theorem describing
the relationship between microbundles and Rn-bundles. Namely, we will prove the following:

Theorem 1. Let Emb(Rn) denote the simplicial set of open embeddings from Rn to itself (so a k-simplex
of Emb(Rn) is an open embedding j : Rn×∆k → Rn×∆k which commutes with the projection to ∆k), and
let Homeo(Rn) ⊆ Emb(Rn) denote the simplicial subset of homeomorphisms from Rn to itself (so that a
k-simplex of Homeo(Rn) is a k-simplex of Emb(Rn) for which the map j is a homeomorphism). Then the
inclusion i : Homeo(Rn) ⊆ Emb(Rn) is a homotopy equivalence of Kan complexes.

Remark 2. We can also define topological spaces parametrizing homeomorphisms or open embeddings from
Rn to itself: Theorem 1 is equivalent to the assertion that the inclusion between these topological spaces is
a weak homotopy equivalence.

Remark 3. We can also define simplicial sets which parametrize PL embeddings and PL homeomorphisms
from Rn to itself. Theorem 1 continues to hold in this case, using essentially the same proof that we will
give below.

The main step in the proof of Theorem 1 is to establish that i is a surjection on π0. In other words,
every open embedding f : Rn → Rn is isotopic to a homeomorphism of Rn with itself. In fact, we will prove
something more precise:

Proposition 4. Let f be an open embedding from Rn to itself. Then there exists an isotopy Ft from f = F0

to a homeomorphism f = F1. Moreover, this isotopy is can be chosen to be constant on the unit ball B(1)
of Rn.

Notation 5. For every positive real number r, let B(r) = {x ∈ Rn : |x| < r} be the open ball of radius r
around the origin (in giving the PL version of this proof, it is convenient to replace B(r) by an open cube).

Here is the rough idea of the proof. The obstruction to an open embedding being a homeomorphism is
that it might not be surjective. Our objective, therefore, is to use an isotopy to modify f so that its image
becomes larger and larger. More precisely, we will construct a sequence of open embeddings

f1, f2, . . . , : Rn → Rn

and a sequence of isotopies hi : Rn×[0, 1]→ Rn so that the following conditions are satisfied:

(1) The map f1 = f .

(2) For each i, the map hi is an isotopy from f i = hi0 to f i+1 = hi1, which is constant on the open ball
B(i).

(3) For i > 1, we have B(i) ⊆ f iB(i).
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Assuming that we can meet these requirements, we can define a homeomorphism f ′ : Rn → Rn by the
formula f ′(x) = f i(x) for any i ≥ |x|. We get an isotopy from f to f ′ by concatenating the isotopies h1, h2,
and so forth (this concatenation is well-defined since almost all of the isotopies hi are constant on any given
compact subset of Rn).

To begin, we may assume without loss of generality that f(0) = 0 (otherwise, we can reduce to this case
by conjugating by a relevant translation). Since f is an open embedding, the image fB(1) contains an open
ball B(ε) for some real number ε > 0. Since f is continuous, there exists a positive real number δ < 1 such
that f(B(δ)) ⊆ B( ε2 ).

To construct our isotopies hi, we will need the following basic building blocks:

Notation 6. For every pair of real numbers r < s, we fix an isotopy H(r, s)t : Rn → Rn from idRn to
H(r, s)1 with the following properties:

(i) The isotopy H(r, s)t is trivial on B( r2 ) and supported in a compact subset of B(s+ 1).

(ii) The map H(r, s)1 restricts to a homeomorphism B(r) to B(s).

We now proceed with the construction of the sequence {f i}. Assume that f i has already been constructed.
We wish to construct an isotopy hi from f i to another map f i+1, which is constant on B(i). First, we define
a homeomorhism c (for “contraction”) from Rn to itself as follows:

c(x) =

{
x if x /∈ f i(Rn)
f i(H(δ, i)−1

1 (y)) if x = f i(y).

Since f i = f on B(1) and f carries B(δ) into B( ε2 ), we deduce that c(f i(x)) ∈ B( ε2 ) if x ∈ B(i). Note that
c is the identity outside a compact set, which we can take to be contained in B(Ni) for some Ni � i+ 1.

We now define hit by the formula

hit = c−1 ◦H(ε,Ni)t ◦ c ◦ f i.

It is clear that hit is an isotopy from f i = hi0 to another map f i+1 = hi1. Moreover, since H(ε,Ni)t is the
identity on B( ε2 ) and c ◦ f i carries B(i) into B( ε2 ), we deduce that hit is constant on B(i). It remains only
to verify that f i+1B(i+ 1) contains B(i+ 1). In fact, we claim that f i+1B(i+ 1) contains B(Ni). Since c is
supported in B(Ni), it suffices to show that (cf i+1)B(i+ 1) = (H(ε,Ni)1 ◦ c ◦ f i)B(i) contains B(Ni). For
this, it suffices to show that (c ◦ f i)B(i) contains B(ε) ⊆ fB(1) ⊆ f iB(i + 1). This is clear, since H(δ, i)1

induces a homeomorphism of B(i+ 1) with itself. This completes the proof of Proposition 4.

Remark 7. In the above construction, each of the isotopies hi is obtained by composing f i with a 1-
parameter family c−1 ◦H(ε,Ni)t ◦ c of homeomorphisms from Rn to itself. It follows that if the original map
f is already a homeomorphism, then the isotopy Ft that we construct will be a path through the space of
homeomorphisms.

Suppose now that we are given not a single open embedding f : Rn → Rn, but a family of open embeddings
f : Rn×∆ → Rn×∆ (compatible with the projection to ∆), where ∆ is some parameter space. We might
try to apply the above construction to each of the induced maps {fv : Rn → Rn}v∈∆ to produce a family
of isotopies {Fv,t : Rn → Rn}(v,t)∈∆×[0,1]. We must be careful, since our construction depended on several
choices. First of all, we needed to choose ε such that fvB(1) contains the open ball B(ε). We note that
f(B(1)×∆) is an open neighborhood of {0} ×∆ in Rn×∆, which will contain some product neighborhood
B(ε) × ∆ provided that ∆ is compact. We also needed to choose a constant δ such that fvB(δ) ⊆ B( ε2 ).
Again, if ∆ is compact, then a sufficiently small real number δ will work for all fv’s simultaneously. Finally,
to constuct each hiv we needed to choose Ni � i+1, so that the relevant contraction cv has compact support
in B(Ni). The support of cv is contained in f ivB(i+ 1). If ∆ is compact, the image f i(B(i+ 1)×∆) will be
contained in a compact subset of Rn×∆, which is in turn contained in B(Ni)×∆ for sufficiently large Ni.
Consequently, we get the following more refined version of Proposition 4:
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Proposition 8. Let ∆ be a compact topological space (for example, a simplex), and suppose we are given
an open embedding f : Rn×∆→ Rn×∆ which is compatible with the projection to ∆. Then there exists an
isotopy F : Rn×∆× [0, 1]→ Rn×∆× [0, 1] with the following properties:

(1) The map F0 coincides with f .

(2) The map F1 is a homeomorphism.

(3) The isotopy F is constant along B(1)×∆.

(4) If fv is already a homeomorphism for some v ∈ ∆, then the isotopy Fv : Rn×[0, 1] → Rn×[0, 1]
consists of homeomorphisms.

We can now prove Theorem 1. The proof is based on the following criterion for detecting homotopy
equivalences:

Proposition 9. Let i : K ⊆ K ′ be an inclusion of Kan complexes. Then i is a homotopy equivalence if and
only if the following condition is satisfied:

(∗) For every n-simplex σ of K ′ whose boundary belongs to K, there exists a homotopy h : ∆n×∆1 → K ′

such that h|∆n × {0} = σ, h|∆n × {1} factors through K, and h| ∂∆n ×∆1 factors through K.

Roughly speaking, the simplex σ is a typical representative of a class in πn−1 of the homotopy fiber of
the inclusion K → K ′, and condition (∗) guarantees that any such class is trivial.

Theorem 1 follows immediately from Proposition 9 and Proposition 8.
In the next lecture, we will discuss the consequences of Theorem 1 for the classification of microbundles.
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