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One of the basic problems of manifold topology is to give a classification for manifolds (of some fixed
dimension n) up to diffeomorphism. In the best of all possible worlds, a solution to this problem would
provide the following:

(i) A list of n-manifolds {Mα}, containing one representative from each diffeomorphism class.

(ii) A procedure which determines, for each n-manifold M , the unique index α such that M 'Mα.

In the case n = 2, it is possible to address these problems completely: a connected oriented surface Σ
is classified up to homeomorphism by a single integer g, called the genus of Σ. For each g ≥ 0, there
is precisely one connected surface Σg of genus g up to diffeomorphism, which provides a solution to (i).
Given an arbitrary connected oriented surface Σ, we can determine its genus simply by computing its Euler
characteristic χ(Σ), which is given by the formula χ(Σ) = 2 − 2g: this provides the procedure required by
(ii).

Given a solution to the classification problem satisfying the demands of (i) and (ii), we can extract an
algorithm for determining whether two n-manifolds M and N are diffeomorphic. Namely, we apply the
procedure (ii) to extract indices α and β such that M ' Mα and N ' Mβ : then M ' N if and only if
α = β. For example, suppose that n = 2 and that M and N are connected oriented surfaces with the same
Euler characteristic. Then the classification of surfaces tells us that there is a diffeomorphism φ from M to
N . In practice, we might want to apply this information by using φ to make some other construction. In
this case, it is important to observe that φ is not unique: there are generally many different diffeomorphisms
from M to N .

Example 1. Let M be a compact oriented 3-manifold, and suppose we are given a submersion M → S1.
Fix a base point ∗ ∈ S1. The fiber M ×S1 ∗ is a compact oriented surface which we will denote by Σ. Write
S1 as a quotient [0, 1]/{0, 1}, so that M is obtained from the pullback M ′ = M ×S1 [0, 1] by gluing together
the fibers M ′

0 ' Σ and M ′
1. Since the interval [0, 1] is contractible, we can write M ′ as a product Σ× [0, 1].

In order to recover M from M ′, we need to supply a diffeomorphism of M ′ ' Σ to M ′
1 ' Σ: in other

words, we need to supply a diffeomorphism φ of Σ with itself. The diffeomorphism φ depends on a choice of
identification M ′ ' Σ× [0, 1]. If we assume that this diffeomorphism is normalized to be the identity on M ′

0,
then we see that φ is well-defined up to isotopy (recall that two diffeomorphisms γ0, γ1 : Σ→ Σ are isotopic
if there is a continuous family {γt : Σ→ Σ}t∈[0,1] of diffeomorphisms which interpolates between γ0 and γ1).

Motivated by this example, it is natural to refine our original classification problem: given two n-manifolds
M and N , we would like to know not only whether M and N are diffeomorphic, but to have a classification
of all diffeomorphisms from M to N , at least up to isotopy. Note that the collection Diff(M,N) of diffeo-
morphisms from M to N carries a natural topology, and the isotopy classes of diffeomorphisms from M to
N can be identified with elements of the set π0 Diff(M,N) of path components of Diff(M,N). Our goal in
this class is to address the following more refined question:

Problem 2. Given a pair of n-manifolds M and N , determine the homotopy type of the space Diff(M,N).
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Remark 3. The space Diff(M,N) is nonempty if and only if M and N are diffeomorphic. If Diff(M,N) is
nonempty, then M ' N so we can identify Diff(M,N) with the group Diff(M) = Diff(M,M) of diffeomor-
phisms from M to itself.

Remark 4. One might ask why Problem 2 is addressing the right question. For example, why do we want to
understand the homotopy type of Diff(M,N) as opposed to some more precise invariant (like the topological
space Diff(M,N) itself) or less precise invariant (like the set π0 Diff(M,N))?

One answer is that the exact topological space Diff(M,N) depends on exactly what we mean by a
diffeomorphism. For example, should we work with diffeomorphisms that are merely differentiable, or should
they be infinitely differentiable? The exact topological space Diff(M,N) will depend on how we answer this
question. But, as we will see later, the homotopy type of Diff(M,N) does not.

To motivate why we would like to understand the entire homotopy type of Diff(M,N), rather than just
its set of path components, we remark that Example 1 can be generalized as follows: given a pair of compact
manifolds M and B, the collection of isomorphism classes of smooth fiber bundles E → B with fiber M can
be identified with the collection of homotopy classes of maps from B into the classifying space BDiff(M).
In other words, understanding the homotopy types of the groups Diff(M) is equivalent to understanding the
classification of families of manifolds.

Problem 2 is very difficult in general. To address it, it is useful to divide manifolds into two different
“regimes”:

• If n ≥ 5, then we are in the world of high-dimensional topology. In this case, it is possible to obtain
partial information about the homotopy type of Diff(M) (for example, a description of its rational
homotopy groups in a range of degrees) using the techniques of surgery theory. The techniques for
obtaining this information are generally algebraic in nature (involving Waldhausen K-theory and L-
theory).

• If n ≤ 4, then we are in the world of low-dimensional topology. In this case, it is customary to
approach Problem 2 using geometric and combinatorial techniques. The success of these method is
highly dependent on n.

Our goal in this course is to study Problem 2 in the low-dimensional regime. When n = 4, very little is
known about Problem 2: for example, little is known about the homotopy type of the diffeomorphism group
Diff(S4). We will therefore restrict our attention to manifolds of dimension n for 1 ≤ n ≤ 3. We will begin
in this lecture by studying the case n = 1. In this case, there is only one connected closed 1-manifold up to
diffeomorphism: the circle S1. However, we can study S1 from many different points of view:

• Geometry: We can regard the circle S1 as a Riemannian manifold, and study its isometry group
Isom(S1).

• Differential topology: We can regard the circle S1 as a smooth manifold, and study its diffeomorphism
group Diff(S1).

• Point-Set Topology: We can regard the circle S1 as a topological manifold, and study the group
Homeo(S1) of homeomorphisms of S1 with itself.

• Homotopy Theory: We can ignore the actual topology of S1 in favor of its homotopy type, and study
the monoid Self(S1) of homotopy equivalences S1 → S1.

We have evident inclusions

Isom(S1) ⊆ Diff(S1) ⊆ Homeo(S1) ⊆ Self(S1).

Theorem 5. Each of the above inclusions is a homotopy equivalence.
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Proof. Each of the spaces above can be decomposed into two pieces, depending on whether or not the
underlying map preserves or reverses orientations. Consider the induced sequence

Isom+(S1) ⊆ Diff+(S1) ⊆ Homeo+(S1) ⊆ Self+(S1)

where the superscript indicates that we restrict our attention to orientation-preserving maps. The group
Isom+(S1) is homeomorphic to the circle S1 itself: an orientation-preserving isometry from S1 to itself is
just given by a rotation. The other groups admit decompositions

Diff+(S1) = Diff+
0 (S1) Isom+(S1)

Homeo+(S1) = Homeo+
0 (S1) Isom+(S1)

Self+(S1) = Self+0 (S1) Isom+(S1),

where the subscript 0 indicates that we consider maps from S1 to itself which fix a base point ∗ ∈ S1.
To complete the proof, it will suffice to show that the spaces Diff+

0 (S1), Homeo+
0 (S1), and Self+0 (S1) are

contractible.
We first treat the case of Self+0 (S1). We note that the circle S1 can be identified with the quotient R /Z.

If f is a map from the circle S1 to itself which preserves the base point (the image of 0 ∈ R), then we can
lift f to a base-point preserving map f̃ : R → R satisfying f̃(x + 1) = f̃(x) + d, where d is the degree of
the map f : S1 → S1. Conversely, any map f̃ : R → R satisfying this condition descends to give a map
f : S1 → S1 of degree d. We observe that f is a homotopy equivalence if and only if d = ±1, and that f is
an orientation-preserving homotopy equivalence if and only if d = 1. We may therefore identify Self+0 (S1)
with the space

V = {f̃ : R→ R : f̃(0) = 0 ∧ f̃(x+ 1) = f̃(x) + 1}

We wish to prove that V is contractible. In fact, for any element f̃ ∈ V , there is a canonical path from
f̃ = f̃0 to the identity map idR = f̃1, given by the formula

f̃t(x) = (1− t)f̃(x) + tx.

We can use the identification Self+0 (S1) ' V to identify Homeo+
0 (S1) and Diff+

0 (S1) with subsets of V :
the former can be identified with the collection of all strictly increasing functions f̃ ∈ V , and the latter with
the collection of all maps f̃ ∈ V which are smooth and have nowhere vanishing derivative. Exactly the same
contracting homotopy shows that these spaces are contractible as well.

We can summarize Theorem 5 as follows:

(1) There is essentially no difference between smooth 1-manifolds and topological 1-manifolds.

(2) Every smooth 1-manifold M admits a Riemannian metric which accurately reflects its topology, in the
sense that every diffeomorphism of M can be canonically deformed to an isometry.

(3) A 1-manifold M is determined, up to canonical homeomorphism, by its homotopy type.

In this course, we will study to what extent these assertions can be generalized to manifolds of dimensions
2 and 3. Here is a loose outline of the material we might cover in this class:

• In large dimensions, there is an appreciable difference between working with smooth and topological
manifolds. A famous example is Milnor’s discovery that there exist nondiffeomorphic smooth structures
on the sphere S7. In fact, these differences are apparent already in lower dimensions: Milnor’s example
comes from the fact that there exist diffeomorphisms of the standard sphere S6 which are topologically
isotopic but not smoothly isotopic, and a similarly the inclusion Diff(S5) → Homeo(S5) fails to be a
homotopy equivalence. Even more dramatic failures occur in dimension 4: the topological space R4

can be endowed with uncountably many nondiffeomorphic smooth structures. However, in dimensions
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≤ 3 these difficulties do not occur. Namely, one can show that the classification of manifolds (including
information about the homotopy types of automorphism groups) of dimension ≤ 3 is the same in the
smooth, topological, and piecewise linear categories. The first part of this course will be devoted to
making this statement more precise and sketching how it can be proved.

• If Σ is a closed oriented surface of genus g > 0, then Σ is aspherical: the homotopy groups πi(Σ)
vanish for i > 1. It follows that the homotopy type of Σ is determined by its fundamental group. In
this case, we will also see that the diffeomorphism group Diff(Σ) is homotopy equivalent to the monoid
of self-diffeomorphisms Self(Σ), so that Diff(Σ) can be described in an entirely combinatorial way in
terms of the fundamental group π1Σ.

For 3-manifolds, the situation is a bit more complicated. A general 3-manifold M need not be aspheri-
cal: the group π2(M) usually does not vanish. However, via somewhat elaborate geometric arguments
one can use the nonvanishing of π2(M) to construct embedded spheres in M which cut M into aspheri-
cal pieces (except in a few exceptional cases). The homotopy type of an aspherical manifold M is again
determined by the fundamental group π1(M). In many cases, one can show that M is determined up
to diffeomorphism by π1(M): this is true whenever M is a Haken manifold. We will study the theory
of Haken manifolds near the end of this course. (Another case in which M can be recovered from the
fundamental group π1M occurs when M is a hyperbolic 3-manifold: this is the content of Mostow’s
rigidity theorem.)

• Manifolds of dimension 2 and 3 can be fruitfully studied by endowing them with additional structure.
For example, we can gain a lot of information about surfaces by choosing conformal structures and
then applying the methods of complex analysis. Using the uniformization theorem, one can show that
every 2-manifold admits a Riemannian metric of constant curvature: this curvature is positive for the
case of a 2-sphere, zero for a torus, and otherwise negative. In dimension 3, Thurston’s geometrization
conjecture provides a much more complicated but somewhat analogous picture: every 3-manifold can
be broken into pieces which admit “geometric structures”. If time allows, we will discuss this near the
end of the course.
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