
Lecture 8: Grothendieck Topologies

December 31, 2021

In the last lecture, we introduced the notion of a pretopos. Recall that a pretopos is a coherent category
C with a few additional features: the category C is required to admit finite coproducts (which are required
to be disjoint), and every equivalence relation in C is required to be effective.

Exercise 1. Let C and D be pretopoi, and let λ : C → D be a functor which preserves finite limits and
effective epimorphisms. Show that the following conditions are equivalent:

(1) The functor λ is a morphism of coherent categories: that is, for every object X ∈ C, the induced map
Sub(X)→ Sub(λ(X)) is a homomorphism of upper semilattices.

(2) The functor λ preserves finite coproducts.

If these conditions are satisfied, we will say that λ is a morphism of pretopoi.

Definition 2. Let C be a pretopos. A model of C is a morphism of pretopoi M : C → Set. We let Mod(C)
denote the full subcategory of Fun(C, Set) spanned by the models of C.

Definition 3. Let T be a (typed) first-order theory. We say that T eliminates imaginaries if the weak
syntactic category Syn0(T ) is a pretopos.

Every first-order theory T can be replaced by an essentially equivalent first-order theory which eliminates
imaginaries. Suppose, for example, that X = [ϕ(x)] is a formula in the language of T , having a single free
variable x of type t, and that R ⊆ X × X is an equivalence relation defined by some formula ψ(x, x′). In
this case, we can enlarge the language of T by adding a new type s (to be interpreted as “X modulo the
equivalence relation R”) and a new binary predicate P of type (t, s) (to be interpreted as the graph of the
projection map X → X/R), and adding the axioms

(∀x, y)[P (x, y)⇒ ϕ(x)]

(∀x)[ϕ(x)⇒ (∃!y)P (x, y)]

(∀x, x′, y, y′)[(P (x, y) ∧ P (x′, y′))⇒ (y = y′ ⇔ ψ(x, x′))]

(∀y)(∃x)[P (x, y)].

Elaborating on this construction, one can produce a typed first-order theory T eq, having the same models
as T , for which T eq eliminates imaginaries. This is a special case of a more general construction:

Theorem 4. Let C be a small coherent category. Then there exists a small pretopos Ceq and a morphism of
coherent categories λ : C→ Ceq with the following universal property: if D is any pretopos, then composition
with λ induces an equivalence of categories Funcoh(Ceq,D) → Funcoh(C,D). Here Funcoh(C,D) denotes the
full subcategory of Fun(C,D) spanned by the morphisms of coherent categories, and Funcoh(Ceq,D) is defined
similarly.

In particular, composition with λ induces an equivalence of categories Mod(Ceq)→ Mod(C).
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In the situation of Theorem 4, the pretopos Ceq is determined (up to canonical equivalence) by the
coherent category C; we will refer to Ceq as the pretopos completion of C.

Definition 5. Let T be a (typed) first order theory. We let Syn(T ) denote the pretopos completion of
Syn0(T ). We will refer to Syn(T ) as the syntactic category of T .

One of our goals over the next several lectures is construct the pretopos completion Ceq. To get a feeling
for what we need to do, let us first suppose that we are given a triple of objects X,Y, Z ∈ C. It could be that
the objects Y and Z do not have a coproduct in C (they also might admit a coproduct in C which fails to be
disjoint, in which case they will have a different coproduct in Ceq). We would like Ceq to be an enlargement
of the category C in which the coproduct Y q Z exists and is disjoint. Let us abuse notation by identifying
objects of C with their image in Ceq (our proof of Theorem 4 will show that the functor λ : C → Ceq is
fully faithful, so this abuse is mostly harmless). So, in order to make sense of the category Ceq, we must in
particular define the set of maps HomCeq(X,Y qZ). Note that we have some obvious candidates for elements
of this set: since Y and Z should be subobjects of Y q Z, we should have monomorphisms

HomC(X,Y ) ↪→ HomCeq(X,Y q Z)←↩ HomC(X,Z).

However, it is not reasonable to expect to find all maps from X to Y q Z in this way. For example, if X
can be written as the join of disjoint subobjects X0, X1 ⊆ X, then it is a disjoint coproduct of X0 and X1

in both C and Ceq. Consequently, any pair of maps f0 : X0 → Y and f1 : X1 → Z in C can be uniquely
amalgamated to obtain a map f : X ' X0 qX1 → Y qZ in the pretopos Ceq. Roughly speaking, we would
like to arrange that all morphisms in Ceq are defined by a procedure similar to this: that is, they can be built
by “gluing together” morphisms that are already present in the coherent category C. To make this precise,
it will be convenient to construct Ceq as a subcategory of a much larger category of sheaves on the coherent
category C.

Definition 6. Let C be a category which admits finite limits. A Grothendieck topology on C is a specification
of a collection of families of maps {fi : Ui → X}i∈I , which we refer to as coverings, satisfying the following
axioms:

(T1) If {fi : Ui → X} is a covering and g : Y → X is any morphism in C, then the collection of projection
maps {Ui ×X Y → Y }i∈I is a covering.

(T2) Let {fi : Ui → X}i∈I is a covering and let {gj : Vj → X} be a collection of maps. If, for each i, the
projection maps {Vj ×X Ui → Ui} form a covering, then {gj : Vj → X} is a covering.

(T3) If {fi : Ui → X} is a collection of morphisms such that some fi admits a section (that is, a morphism
s : X → Ui satisfying fi ◦ s = idX), then {fi : Ui → X} is a covering.

Remark 7. One can also consider Grothendieck topologies on categories which do not admit finite limits.
In this case, requirement (T1) must be rephrased. In this course, we will not need to consider Grothendieck
topologies on such categories.

Exercise 8. Let C be a category which admits fiber products which is equipped with a Grothendieck
topology, and suppose that {Ui → X} is a covering. Show that any larger collection of morphisms (with the
same target X) is also a covering.

Definition 9. A Grothendieck site is a category C together with a Grothendieck topology on C.

Example 10. Let X be a topological space and let U be the collection of all open subsets of X, regarded
as a partially ordered set with respect to inclusions. Then, when regarded as a category, the poset U carries
a Grothendieck topology, where a collection of maps {Ui → U}i∈I is a covering if

⋃
i∈I Ui = U .

The original motivation for Definition 6 came from algebraic geometry:
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Example 11. Let X be a scheme and let C be the category of schemes U equipped with an étale map
U → X. Then C can be equipped with a Grothendieck topology, where a collection of maps {Ui → U} is a
covering if the induced map qiUi → U is surjective. When endowed with this topology, C is referred to as
the small étale site of the scheme X.

For the moment, we will be primarily interested in Grothendieck sites which arise from coherent categories:

Proposition 12. Let C be a coherent category. Then C admits a Grothendieck topology which can be described
as follows: a collection of morphisms {fi : Ui → X}i∈I is a covering if there exists some finite subset I0 ⊆ I
such that

∨
i∈I0

Im(fi) = X (in the lattice Sub(X)).

Proof. Since the formation of images and joins of subobjects is compatible with pullback, it is clear that this
notion of covering satisfies axiom (T1).

Note that a collection of maps {fi : Ui → X}i∈I is a covering if, for some finite subset I0 ⊆ I, there is no
proper subobject X ′ ( X such that fi factors through X ′, for each i ∈ I0. From this description, it is clear
that (T3) is satisfied.

To verify (T2), suppose that we are given a covering {Ui → X}i∈I and a collection of maps {Vj → X}j∈J

with the property that, for each i ∈ I, the collection {Vj ×X Ui → Ui}j∈J is a covering. We wish to show
that {Vj → X}j∈J is a covering. Without loss of generality, we may assume that I is finite and J are finite.
Suppose that there exists a subobject X ′ ⊆ X such that each of the maps Vj → X factors through X ′. Then
each Vj →X Ui → Ui factors through X ′ ×X Ui. It follows that X ′ ×X Ui = Ui (as subobjects of Ui). In
other words, the maps Ui → X factor through X ′. Using our assumption that {Ui → X} is a covering, we
conclude that X ′ = X.

Definition 13. Let C be a category. A presheaf (of sets) on C is a functor F : Cop → Set.
Suppose that C admits fiber products and is equipped with a Grothendieck topology. We will say that a

presheaf F is a sheaf if, for every covering {Ui → X}i∈I , the diagram of sets

F (X) // ∏
i∈I F (Ui)

// //
∏

i,j∈I F (Ui ×X Uj)

is an equalizer: that is, we can F (X) with the set of tuples {si ∈ F (Ui)} having the property that, for
every pair i, j ∈ I, the elements si and sj have the same image in F (Ui ×X Uj). We let Shv(C) denote the
full subcategory of Fun(Cop, Set) spanned by the sheaves on C.

Example 14. Let X be a topological space and let U be the partially ordered set of open subsets of X. A
sheaf on X is defined to be a sheaf on the category U, where we equip U with the Grothendieck topology of
Example 10. We will denote the category of sheaves on X by Shv(X).

Example 15 (Representable Sheaves). Let C be any category. For each object Y ∈ C, let hY denote the
functor represented by Y , given by the formula hY (X) = HomC(X,Y ). We say that a Grothendieck topology
on C is subcanonical if hY is a sheaf, for each Y ∈ C. If this condition is satisfied, then the construction
Y 7→ hY determines a fully faithful embedding C ↪→ Shv(C).

Proposition 16. Let C be a coherent category. Then the Grothendieck topology of Proposition 12 is sub-
canonical. In particular, we can view C as a full subcategory of Shv(C).

Proof. Fix an object Y ∈ C; we wish to show that the functor hY is a sheaf. To prove this, suppose we are
given a covering {Ui → X}. We wish to show that the diagram of sets

HomC(X,Y ) // ∏
i∈I HomC(Ui, Y ) ////

∏
i,j∈I HomC(Ui ×X Uj , Y )

is an equalizer. In other words, we wish to show every collection of morphisms fi : Ui → Y which is
compatible, in the sense that fi and fj define the same morphism from Ui×X Uj into Y , define an essentially
unique map f : X → Y . Without loss of generality, we can assume that I is finite (exercise: justify this). For
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each i ∈ I, let Xi denote the image of the map Ui → X. Then we have an effective epimorphism Ui → Xi,
and the map coequalizes the projection maps

π, π′ : Ui ×Xi Ui ' Ui ×X Ui → Ui.

It follows that each fi factors uniquely as a composition Ui → Xi
fi−→ Y . Moreover, for i 6= j, the maps f i

and f j have the same restriction to Xi ∧Xj (since this can be checked after composition with the effective
epimorphism

Ui ×X Uj → Xi ×X Xj = Xi ∧Xj .

It will therefore suffice to show that we can (uniquely) amalgamate the maps f i to a single map f : X → Y .
We now proceed as in the previous lecture. Each f i has a graph Γ(f i), which we can view as a subobject

of X ×Y . Set Z =
∧

Γ(f i). We will complete the proof by showing that Z is the graph of a morphism from
X to Y . To prove this, it will suffice to show that the composition

Z ↪→ X × Y → X

is a monomorphism (it will then necessarily be an isomorphism, since its image contains
∨
Xi which is equal

to X by virtue of our assumption that {Ui → X} is covering). In other words, it will suffice to show that the
diagonal map Z ↪→ Z ×X Z is an isomorphism. Note that, as subobjects of X × Y × Y , Z can be identified
with the join of the graphs of the maps (f i, f i) : Xi → Y × Y , while Z ×X Z can be identified with the join
of the graphs of the morphisms

(f i|Xi∧Xj , f j |Xi∧Xj ) : Xi ∧Xj → Y × Y.

We complete the proof by observing that we have inclusions

Γ(f i|Xi∧Xj
, f j |Xi∧Xj

) ⊆ Γ(f i, f i),

since f i and f j have the same restriction to Xi ∧Xj .

We can now describe our approach to the proof of Theorem 4. Given a coherent category C, we can view
it as a subcategory of the sheaf category Shv(C). We will realize the pretopos completion Ceq as a slightly
larger subcategory of Shv(C). In order to show that this works, we will need to study the structural features
of the category Shv(C), and other categories like it.

Definition 17. Let X be a category. We say that X is a topos if there is an equivalence of categories
X ' Shv(C), where C is a small Grothendieck site which admits finite limits.

Example 18. For every topological space X, the category Shv(X) is a topos.

Example 19. Let T be a first-order theory and let Syn0(T ) be the weak syntactic category of T , equipped
with the Grothendieck topology of Proposition 12. Then Shv(Syn0(T )) is a topos. We will refer to
Shv(Syn0(T )) as the classifying topos of T .

A useful heuristic is that a topos is a kind of generalized topological space; the classifying topos of a
first-order theory T can be viewed as a kind of “space of all models of T .”

Warning 20. In the situation of Definition 17, the category C is not uniquely determined by X. In general,
many different Grothendieck sites can give rise to the same topos. For example, we will see that if C is a small
coherent category and Ceq is its pretopos completion, then the topoi Shv(C) and Shv(Ceq) are equivalent.

Remark 21. In the situation of Definition 17, the requirement that C admits finite limits is not necessary: we
impose it only because we have not defined the notion of Grothendieck topology in full generality. However,
it is a harmless assumption (if a category has the form Shv(C) for an arbitrary small Grothendieck site C,
then it also has the form Shv(C′) where C′ is a small Grothendieck site which admits finite limits).
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