
Lecture 5: Booleanization

January 31, 2018

Recall the following definition from the previous lecture:

Definition 1. Let C be a category. We will say that C is a coherent category if it satisfies the following
axioms:

(A1) The category C admits finite limits.

(A2) Every morphism f : X → Z in C admits a factorization X
g−→ Y

h−→ Z, where g is an effective
epimorphism and h is a monomorphism.

(A3) For every object X ∈ C, the partially ordered set Sub(X) is an upper semilattice: that is, it has a least
element, and every pair of subobjects X0, X1 ⊆ X have a least upper bound X0 ∨X1.

(A4) The collection of effective epimorphisms in C is stable under pullback.

(A5) For every morphism f : X → Y in C, the map f−1 : Sub(Y ) → Sub(X) is a homomorphism of upper
semilattices.

Definition 2. Let C and C′ be coherent categories. A morphism of coherent categories from C to C′ is a
functor F : C→ C′ with the following properties:

(1) The functor F is left exact: that is, it preserves finite limits.

(2) The functor F carries effective epimorphisms to effective epimorphisms.

(3) For every object X ∈ C, the induced map Sub(X) → Sub(F (X)) is a homomorphism of upper semi-
lattices: that is, it preserves smallest elements and joins.

Remark 3. Let F : C → C′ satisfy condition (1) of Definition 2. Then F preserves monomorphisms.
Consequently, condition (2) is equivalent to the requirement that for every morphism f : X → Z, the functor
F carries the canonical factorization X → Im(f) ↪→ Z to the factorization F (X) → Im(F (f)) ↪→ F (Z).
Note also that in the situation of (3), the map Sub(X)→ Sub(F (X)) is automatically a homomorphism of
lower semilattices (that is, it preserves largest elements and meets).

Example 4. Let P and P ′ be distributive lattices. Then, when viewed as categories, P and P ′ are coherent
categories. A morphism of coherent categories from P to P ′ is just a lattice homomorphism: that is, a map
of partially ordered sets that preserves least upper bounds and greatest lower bounds for finite subsets.

Example 5. Let C be a category containing an object X. We can then form a new category C/X , whose
objects are pairs (U, f), where U ∈ C is an object and f : U → X is a morphism. A morphism from (U, f)
to (V, g) in C is a morphism h : U → V in C such that f = g ◦ h. The construction (U, f) 7→ U determines
a forgetful functor C/X → C, and we will generally abuse notation by identifying an object of C/X with its
image under this forgetful functor.

Exercise 6. Show that if C is a coherent category, then so is C/X . Moreover, the formation of fiber products,
images, and unions of subobjects in C/X can be computed in the underlying category C.
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Beware that the forgetful functor C/X → C is not a morphism of coherent categories, because it does not
preserve final objects. However, the forgetful functor has a right adjoint which is a morphism of coherent
categories. More generally, suppose that f : X → Y is any morphism in C. Then f determines a functor
f∗ : C/Y → C/X , given by the construction U 7→ U ×X Y .

Exercise 7. Show that if f : X → Y is a morphism in a coherent category C, then the functor f∗ : C/Y →
C/X is a morphism of coherent categories. In fact, this is precisely the content of axioms (A4) and (A5).

Definition 8. Let C be a coherent category. A model of C is a morphism of coherent categories M : C→ Set.
We let Mod(C) denote the full subcategory of the functor category Fun(C, Set) spanned by the models of C;
we refer to Mod(C) as the category of models of C.

Example 9. Let C = Syn0(T ) be the weak syntactic category of a (typed) first-order theory T . Then we
can identify Mod(C) with the category of models of T (with morphisms given by elementary embeddings):
that is the content of the theorem from the previous lecture.

We now return to a question from the previous lecture: given a category C, can we construct a first-order
theory T whose weak syntactic category is C?

Construction 10. Let C be a small coherent category. We define a typed first-order theory T (C) as follows:

• The types of T (C) are the objects of C. We use uppercase letters like X and Y to denote these types,
and the corresponding lowercase letters x, y, etcetera to denote variables of those types.

• For every morphism f : X → Y in C, the language of T (C) has a single predicate Pf , of arity (X,Y ).

By definition, a structure for the language T (C) is a rule which associates to each object X ∈ C a set
M [X], and to each morphism f : X → Y a relation M [Pf ] ⊆ M [X] ×M [Y ]. We now list the axioms of
T (C), along with the constraints they place on a structure M :

• For every f : X → Y , we have an axiom (∀x)(∃!y)[Pf (x, y)]. (So that M [Pf ] is the graph of a function
fM : M [X]→M [Y ].)

• If i : X → X is the identity morphism, we have an axiom (∀x)[Pi(x, x)]. (So that iM : M [X]→M [X]
is the identity map.)

• Given a pair of composable morphisms f : X → Y and g : Y → Z, we have an axiom (∀x, y, z)[(Pf (x, y)∧
Pg(y, z))⇒ Pgf (x, z)]. (So that gM ◦ fM = (g ◦ f)M .)

These first axioms guarantee that a model M of T (C) can be viewed as a functor from C to the category of
sets. We now add additional axioms to guarantee that this functor has nice properties:

• If 1 is a final object of C and e is a variable of type 1, we have an axiom (∃!e)[e = e] (So that M
preserves final objects.)

• For every pullback square

X ′
g′ //

f ′

��

X

f

��
Y ′

g // Y

in C, we have an axiom (∀x, y, y′)[(Pf (x, y) ∧ Pg(y′, y)) ⇒ (∃!x′)[Pf ′(x′, x) ∧ Pg′(x′, y′)]] (So that M
preserves pullback squares.)

• If f : X → Y is an effective epimorphism in C, we have an axiom (∀y)(∃x)[Pf (x, y)] (so that M carries
effective epimorphisms to surjections of sets).
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• If X is an object of C and f : X0 ↪→ X is a monomorphism which exhibits X0 as the smallest element
of Sub(X), then we have an axiom ¬(∃x0)[x0 = x0] (so that M carries the smallest element of Sub(X)
to the empty set).

• If X is an object of C which is given as the join of subobjects f : Y ↪→ X and g : Z ↪→ X, then we have
an axiom (∀x)[(∃y)[Pf (y, x)] ∨ (∃z)[Pg(z, x)]] (so that M carries joins in Sub(W ) to unions of subsets
of M [W ]).

The theory T (C) has the property that models of T (C) are the same as models of C. Let us now make
that idea more precise:

Construction 11. We define a functor λ : C→ Syn0(T (C)) as follows:

• For each object X ∈ C, we set λ(X) = [x = x], where x is some variable of the type X.

• For every morphism f : X → Y in C, we let λ(f) : λ(X)→ λ(Y ) denote the morphism in C defined by
the formula Pf (x, y).

By construction, a model M of T (C) can be viewed as a morphism of coherent categories M : C→ Set, so that
M [Pf (x, y)] is the graph of a function fM from M [X] to M [Y ]. Moreover, since we have (g ◦f)M = gM ◦fM
for each M , it follows that λ(g ◦ f) = λ(g) ◦ λ(f). Similarly, λ(idX) = idλ(X), so that λ is a functor from C

to Syn0(T (C)). Moreover, this functor preserves finite limits, effective epimorphisms, and joins of subobjects
(since these properties can be tested in every model of T (C)). In other words, λ is a morphism of coherent
categories.

Note that the identification
{Models of T (C)} ' { Models of C }

is simply given by composition with the functor F of Construction 11. This composition determines a functor

Mod(T (C)) ' Mod(Syn0(T (C)))→ Mod(C).

By construction, the composite functor is bijective on objects. Beware that it is not necessarily an equivalence
of categories. Our next goal is to discuss the following:

Theorem 12. Let C be a small coherent category. Then the functor λ : C → Syn0(T (C)) of Construction
11 is an equivalence of categories if and only if C is Boolean.

Remark 13. The “only if” direction is obvious, since the weak syntactic category Syn0(T (C)) is Boolean.

Remark 14. In the situation of Theorem 12, we can think of the weak syntactic category Syn0(T (C)) as a
“Booleanization” of Syn0(C). If f : C→ D is any morphism of coherent categories, then f can be completed
to a diagram

C
f //

λC

��

D

λD

��
Syn0(T (C))

Syn0(T (f))// Syn0(T (D)).

which commutes up to canonical isomorphism. If D is Boolean, then Theorem 12 guarantees that λD is an

equivalence, so that f is isomorphic to the composition C
λC−−→ Syn0(T (C)) Syn0(T (C))

g−→ D where g is the
composition λ−1D ◦ Syn0(T (f)). It is possible to show that this factorization is essentially unique (but this
requires additional input).
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Example 15 (The Theory of Groups). We will see later that there is a natural way to choose a coherent
category C for which the category Mod(C) is equivalent to the category whose objects are groups and whose
morphisms are group homomorphisms. In this case, T (C) would be equivalent to the category whose objects
are groups and whose morphisms are elementary embeddings of groups. Here we could replace groups by
other mathematical structures of a similar flavor (abelian groups, rings, Lie algebras, etcetera).

Example 16. A topological space X is said to be spectral if it satisfies the following conditions:

• The quasi-compact open subsets of X form a basis for the topology of X.

• The space X is quasi-compact, and the intersection U ∩ V is quasi-compact whenever U, V ⊆ X are
quasi-compact open sets.

• Every irreducible closed subset of X has a unique generic point.

For example, the underlying topological space of any quasi-compact and quasi-separated scheme is spectral
(and conversely, due to a theorem of Hochster).

Let X be a spectral space. We say that a subset K ⊆ X is constructible if it belongs to the Boolean
algebra generated by the quasi-compact open subsets of X. We can then equip X with a new topology, called
the constructible topology, by taking the constructible subsets of X as a basis. Let us denote the resulting
topological space by Xc; one can show that it is a Stone space (that is, it is compact, Hausdorff, and totally
disconnected).

The construction X 7→ Xc can be regarded as a special case of the Booleanization procedure of Con-
struction 11. If X is a spectral space, then the collection of quasi-compact open subsets of X forms a
distributive lattice P , which we can regard as a coherent category. Then the Booleanization Syn0(T (P ))
is a Boolean coherent category in which every object admits a monomorphism to the final object, and is
therefore equivalent to a Boolean algebra. This turns out to be the Boolean algebra of constructible subsets
of X, or equivalently of quasi-compact open subsets of Xc.

In the situation above, we can identify X with the set of equivalence classes of models of P , and Xc

with the set of equivalence classes of models of Syn0(T (P )). The fact that the topological spaces X and Xc

have the same points is an illustration of the general fact that a coherent category C and its Booleanization
Syn0(T (C)) have “the same” models. However, the categories of models need not be equivalent. In the
example of a spectral space X, this corresponds to the observation that in general there can be closure
relations between points of X (that is, it is possible for a point x ∈ X to lie in the closure of a different point
y ∈ X), but not in Xc (since Xc is a Hausdorff space).

We now begin the proof of Theorem 12 (we will continue in the next lecture).

Proposition 17. Let C be a small Boolean coherent category. Let X be an object of C which is given as a
product

∏
1≤i≤nXi, and suppose that ϕ(x1, . . . , xn) is a formula in the language of T (C) whose variables xi

have type Xi. Then there exists a subobject Y ⊆ X such that λ(Y ) and [ϕ(x1, . . . , xn)] coincide as subobjects
of λ(X1)× · · · × λ(Xn) ' λ(X).

Proof. We proceed by induction on the construction of the formula ϕ. There are five cases:

(i) Suppose ϕ(~x) has the form xi = xj , for some pair i, j with Xi = Xj . In this case, we can take Y to be
the fiber product X ×Xi×Xj

Xi.

(ii) Suppose that ϕ(~x) has the form Pf (xi, xj), where f : Xi → Xj is a morphism in C. In this case, we
take Y to be the fiber product X ×Xi×Xj

Xi (where Xi is embedded in the product Xi ×Xj as the
graph of f).

(iii) Suppose that ϕ(~x) has the form ϕ0(~x)∨ϕ1(~x). By our inductive hypothesis we can assume that there
are subobjects Y0, Y1 ⊆ X satisfying λ(Y0) = [ϕ0(~x)] and λ(Y1) = [ϕ1(~x)] (as subobjects of λ(X)). We
then take Y = Y0 ∨ Y1.
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(iv) Suppose that ϕ(~x) has the form ¬ψ(~x). By the inductive hypothesis, we can choose a subobject Y ′ ⊆ X
such that λ(Y ′) = [ψ(~x)] as subobjects of λ(X). Our assumption that C is Boolean guarantees that
Y ′ has a complement Y ∈ Sub(X). Since F induces a Boolean algebra homomorphism Sub(X) →
Sub(F (X)), it follows that λ(Y ) = [ϕ(~x)] (as subobjects of λ(X)).

(v) Suppose that ϕ(~x) has the form (∃z)[ψ(~x, z)], where z is a variable of type Z. In this case, our inductive
hypothesis guarantees that there exists a subobject Y ⊆ X×Z such that λ(Y ) = [ψ(~x, z)] as subobjects
of λ(X × Z) ' λ(X)× λ(Z). Let Y denote the image of the composite map Y ↪→ X × Z → X. Since
F preserves images, it follows that λ(Y ) is the image of the map [ψ(~x, z)] → F (X), which coincides
with [ϕ(~x)].

5


