
Lecture 30X-Higher Categorical Logic

April 24, 2018

In this final lecture, we sketch (without proof) how some of the ideas of this course can be extended to the
setting of higher category theory. We assume that the reader is familiar with the language of ∞-categories
(following the terminology of Higher Topos Theory).

Let C be an ∞-category which admits finite limits. To each morphism f : X → Y in C, we can associate
a simplicial object X• of C, where Xn is the (n + 1)-fold fiber power of X over Y . We refer to X• as the
Čech nerve of f . It is an example of a groupoid object of C. We will say that a morphism f : X → Y is an
effective epimorphism if it exhibits Y as a geometric realization of the Čech nerve of f .

Definition 1. Let C be an ∞-category. We say that C is an ∞-pretopos if it satisfies the following axioms:

(A1) The ∞-category C admits finite limits.

(A2) Every groupoid object X• is effective: that is, it arises as the Čech nerve of an effective epimorphism
X0 → Y in C (in particular, X• admits a geometric realization Y ' |X•|).

(A3) The ∞-category C admits finite coproducts, and coproducts are disjoint (that is, the maps X ↪→
X q Y ←↩ Y are monomorphisms, and the fiber product X ×XqY Y is initial).

(A4) The collection of effective epimorphisms in C is closed under pullbacks.

(A5) The formation of finite coproducts in C is preserved by pullback.

Let n ≥ −1 be an integer. We say that an object X of an ∞-category C is n-truncated if the mapping
spaces MapC(Y,X) are n-truncated for each object Y ∈ C: that is, if the homotopy groups π∗MapC(Y,X)
vanish for ∗ > n. We say that an object of C is discrete if it is 0-truncated.

Proposition 2. Let C be an ∞-pretopos. For every integer n, let C≤n be the full subcategory of C spanned
by the n-truncated objects. Then:

• The inclusion functor C≤n ↪→ C admits a left adjoint, which we will denote by X 7→ τ≤nX.

• The category C≤0 of discrete objects of C is a pretopos.

Definition 3. Let C and C′ be ∞-pretopoi. A morphism of ∞-pretopoi from C to C′ is a functor F : C→ C′

which preserves finite limits, finite coproducts, and effective epimorphisms. We let Funcoh(C,C′) denote the
full subcategory of Fun(C,C′) spanned by those morphisms of ∞-pretopoi.

If C is an∞-pretopos, we define a model of C to be a morphism of∞-pretopoi C→ S, where S denotes the
∞-category of spaces. The collection of models of C forms an ∞-category which we will denote by Mod(C).

Remark 4. It follows from Proposition 2 that the construction C 7→ C≤0 determines a forgetful functor

{∞-pretopoi} → {Pretopoi}.

One can show that this functor has a left adjoint, which carries an ordinary pretopos C to an ∞-pretopos
that we will denote by C+. Roughly speaking, one can think of objects of C+ as “stacky” objects of C.
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Example 5. Let S be the ∞-category of spaces. Then S is an ∞-pretopos, whose underlying ordinary
pretopos S≤0 can be identified with the category Set of sets. The ∞-pretopos Set+ can be identified with
the union

⋃
n≥0 S≤n, regarded as a full subcategory of S.

Example 6. Let Setfin be the pretopos of finite sets. Then Set+
fin is the ∞-pretopos of π-finite spaces: that

is, the full subcategory of S spanned by those spaces X for which the homotopy groups πn(X,x) are finite
for each n ≥ 0 (and each base point x ∈ X), and which vanish for n � 0. This is the initial object in the
setting of ∞-pretopoi.

Remark 7. Let C be a pretopos and let C+ be the associated ∞-pretopos. Then we have a canonical
equivalence

Mod(C+) = Funcoh(C+, S) ' Funcoh(C, S≤0) ' Mod(C).

In other words, the ∞-category of models of C+ can be identified with the ordinary category of models of C.
Consequently, the pretopos C and the ∞-pretopos C+ can be regarded as incarnations of the same object.

Remark 8. One can think of the relationship between ∞-pretopoi and ordinary pretopoi as analogous to
the relationship between ordinary pretopoi and distributive lattices. Every ordinary pretopos C determines
a distributive lattice, given by the poset Sub(1C). This construction has a left adjoint, given by the pretopos
completion. The left adjoint is fully faithful (in both settings), but not essentially surjective: passing from an
∞-pretopos to an ordinary pretopos and passing from an ordinary pretopos to a distributive lattice typically
loses a lot of information.

Definition 9. Let C be an ∞-pretopos. We will say that C is bounded if every object X of C is n-truncated,
for some n� 0 (which might depend on X).

If C is an ∞-pretopos, then the full subcategory C<∞ =
⋃
n≥0 C≤n is a bounded ∞-pretopos. Moreover,

the ∞-pretopoi C and C<∞ have the same models (every model M : C<∞ → S extends uniquely to a model
of C, given by the construction

(C ∈ C) 7→ (lim←−M(τ≤nC) ∈ S).

We will henceforth restrict our attention to the study of bounded ∞-pretopoi.

Remark 10. Remark 7 admits a converse. Let C be a small ∞-pretopos. Then C is of the form C+
≤0 if and

only if it is bounded and the ∞-category Mod(C) is (equivalent to) an ordinary category.

Example 11. Let CRing denote the category of commutative rings, and let X denote the full subcategory of
Fun(CRing, Set) spanned by those functors which preserve filtered colimits. Then X is a coherent topos. Let
Xcoh denote the pretopos of coherent objects of X. Then the category Mod(Xcoh) can be identified with the
category CRing of commutative rings. Here we can replace the category CRing by an arbitrary compactly
generated category.

This construction has an ∞-categorical analogue. Let E denote the ∞-category of connective E∞-ring
spectra (or any other compactly generated ∞-category), and let X ⊆ Fun(E, S) be the full subcategory
spanned by those functors which preserve filtered colimits. Then X is an example of an ∞-topos, and it has
a full subcategory Xcoh

<∞ ⊆ X of truncated coherent objects. This subcategory is a bounded ∞-pretopos, and

the ∞-category Mod(Xcoh
<∞) can be identified with E.

The study of ∞-pretopoi can be regarded as a generalization of classical first order logic, suitable for
studying the model theory of objects which behave in a homotopy-theoretic way (such as structured ring
spectra).

Let C be a bounded ∞-pretopos. We let StoneC denote the ∞-category whose objects are pairs (X,OX),
where X is a Stone space and OX : C → ShvS(X) is a morphism of ∞-pretopoi (here ShvS(X) denotes
the ∞-category of S-valued sheaves on X). We can regard the ∞-category Mod(C) of models of C as a
full subcategory of Stoneop

C , spanned by those pairs (X,OX) where X consists of a single point. As in the
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1-categorical case, one can show that the category StoneC admits coproducts, so that every collection of
models {Mi}i∈I admits a coproduct ∐

i∈I
({i},Mi)

in the∞-category StoneC. This is a pair (X,OX), where X can be identified with the Stone-Čech compacti-
cation βI, and the stalk of OX at a point x corresponding to an ultrafilter U is given by the formula

OCX,x = lim−→
J∈U

∏
i∈J

Mi(C)

(which we can think of as the ultraproduct of the models Mi indexed by U). We let Stonefr
C denote the full

subcategory of StoneC spanned by the objects of this form, so that we have a forgetful functor Stonefr
C →

Stonefr. The following definition encodes the essential properties of this fibration:

Definition 12. An ∞-ultracategory is a locally Cartesian fibration of ∞-categories π : E → Stonefr with
the following properties:

(1) Let M = Eop
∗ . Then, for every set I, the pullback functors associated to the inclusion maps ∗ ' {i} ↪→

βI induce an equivalence of ∞-categories E
op
βI '

∏
i∈I M.

(2) If f : E → E′ and g : E′ → E′′ are locally π-Cartesian morphisms of E, and π(f) : π(E) → π(E′)
carries isolated points of π(E) to isolated points of π(E′), then g ◦ f is also locally π-Cartesian.

In this case, we will refer to M as the underlying ∞-category of the ultracategory π : E→ Stonefr (and will
abuse terminology by simply referring to M as an ultracategory).

In the case where M is an ordinary category, Definition 12 specializes to the notion of an ultracategory
(or, more precisely, the notion of an ultracategory fibration) introduced earlier in this course. In this case,
it was possible to rewrite Definition 12 explicitly in terms of structure on M. This is already somewhat
cumbersome in the 1-categorical case, and is much more so in the ∞-categorical setting: roughly speaking,
the structure on M is given by a collection of “ultraproduct functors” PU : MI → M, together with
some natural transformations between iterated ultraproducts which satisfy an infinite hierarchy of coherence
conditions. These coherence conditions are encoded neatly in the structure of the locally Cartesian fibration
π : E→ Stonefr.

Example 13. Let C be an∞-pretopos. Then the forgetful functor Stonefr
C → Stonefr is an∞-ultracategory,

with underlying ∞-category Mod(C).

Definition 14. Let π : E → Stonefr and π′ : E′ → Stonefr be ∞-ultracategories, with underlying ∞-
categories M and M′, respectively. We let FunUlt(M,M′) denote the full subcategory of

Fun(E,E′)op ×Fun(E,Stonefr)op {π}

spanned by those functors F : E→ E′ satisfying π = π′◦F , for which F carries locally π-Cartesian morphisms
to locally π′-Cartesian morphisms. We will refer to FunUlt(M,M′) as the ∞-category of ultrafunctors from
M to M′.

Makkai duality then admits the following ∞-categorical generalization:

Theorem 15. Let C and C′ be small bounded ∞-pretopoi. Then the canonical map

Funcoh(C,C′)→ FunUlt(Mod(C′),Mod(C))

is an equivalence of ∞-categories. (In fact, it is enough to assume that C is bounded and C′ is small.)
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In other words, a small bounded ∞-pretopos C can be recovered from its ∞-category Mod(C) of models,
regarded as an ∞-ultracategory. This can be proven using essentially the same strategy that we used to
deduce the 1-categorical version of Makkai duality.

Remark 16. It is not so hard to classify ∞-ultracategories for which the underlying ∞-category M is a
Kan complex. The∞-ultracategories for which M is an n-truncated Kan complex can be identified with the
n-truncated objects of Top+

ch, where Topch is the pretopos of compact Hausdorff spaces. (In other words,
they are “stacky” versions of compact Hausdorff spaces: when n = 0, this recovers the description of ultrasets
given in Lecture 26X.
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