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To every small pretopos C, we have associated an ultracategory fibration π : StonefrC → Stonefr, with
underlying ultracategory Mod(C). Here the assumption that C is small is not really essential: for any
pretopos C, we can consider the category Mod(C) ⊆ Fun(C, Set) of pretopos morphisms from C to Set,
and equip it with the structure of an ultracategory. In this lecture, we will study a right adjoint to this
construction.

We begin with some preliminary remarks.

Proposition 1. Let I be a set and let X = βI. Then the direct image functor

ι∗ : SetI ' Shv(I)→ Shv(X)

is a morphism of pretopoi: that is, it preserves finite limits, finite coproducts, and effective epimorphisms.

Proof. It is clear that ι∗ preserves finite limits. The axiom of choice implies that every epimorphism in SetI

admits a section, so that ι∗ preserves effective epimorphisms. Consequently, to show that it is a morphism
of pretopoi, it will suffice to show that for every finite set J , the functor ι∗ carries the constant sheaf JI on
the discrete space I to the constant sheaf JX on X (see Lemma 4 of Lecture 16X). This follows from the
observation that every map I → J extends uniquely to a locally constant map βI → J (since J is compact),
and that an analogous statement holds for each clopen subset of X.

Corollary 2. Let I be a set and let U be an ultrafilter on I. Then the ultraproduct functor

PU : SetI → Set {Mi}i∈I 7→ (
∏
i∈I

Mi)/U

is a morphism of pretopoi.

Proof. The functor PU is given by the composition

SetI
ι∗−→ Shv(βI)

U∗

−−→ Set

where U∗ denotes the functor given by taking the stalk at the point of βI corresponding to the ultrafilter
U.

Remark 3. Corollary 2 is a version of the  Los ultraproduct theorem: it implies that for any pretopos C,
composition with PU induces a functor

Mod(C)I = Funcoh(C, SetI)
PU◦−−−→ Funcoh(C, Set) = Mod(C),

where Funcoh(C,D) denotes the category of pretopos morphisms from C to D.

Corollary 4. Let π′ : StonefrSet → Stonefr denote the forgetful functor. Then:

• For each X ∈ Stonefr, the category (π′−1{X})op is a pretopos.
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• For each morphism f : Y → X in Stonefr, the pullback functor f∗ : (π′−1{X})op → (π′−1{Y })op is a
morphism of pretopoi.

Proof. If X = βI, then (π′−1{X})op is equivalent to SetI . Moreover, if Y = βJ and f : Y → X is a map
given by a family of ultrafilters {Uj}j∈J on the set I, then the pullback functor f∗ can be identified with
the construction

({Mi}i∈I ∈ SetI) 7→ ({
∏
i∈I

Mi)/Uj}j∈J ∈ SetJ),

and is therefore a morphism of pretopoi (Corollary 2).

Corollary 5. Let π : E→ Stonefr be an ultracategory fibration and let Mor(E,StonefrSet) denote the category
of ultracategory fibration morphisms from E to StonefrSet. Then the category Mor(E,StonefrSet)

op is a pretopos
(not necessarily small).

Proof. It follows from Corollary 4 that we can compute finite limits, finite coproducts, and quotients by
equivalence relations in the category Mor(E,StonefrSet)

op “fiberwise.”

Or, stated in terms of ultracategories:

Corollary 6. Let M be an ultracategory. Then the category FunUlt(M, Set) is a pretopos.

Remark 7. In the situation of Corollary 6, the forgetful functor FunUlt(M, Set) → Fun(M, Set) is a mor-
phism of pretopoi. Equivalently, for each M ∈M, the evaluation functor F 7→ F (M) determines a morphism
of pretopoi FunUlt(M, Set) → Set. In order words, finite limits, finite coproducts, and quotients by equiva-
lence relations in FunUlt(M, Set) can be computed “pointwise”.

Let C be a (small) pretopos. Then the category StonefrC can be identified with the full subcategory of

Fun(C,StonefrSet)×Fun(C,Stonefr) Stonefr

spanned by those pairs (F : C→ StonefrSet, X) with the property that F determines a morphism of pretopoi
C→ Shv(X). Consequently, for any ultracategory fibration π : E→ Stonefr, we have a canonical equivalence

Mor(E,StonefrC)op ' Funcoh(C,Mor(E,StonefrSet)
op).

Or, stated in terms of ultracategories:

Corollary 8. Let M be an ultracategory and let C be a pretopos. Then there is a canonical equivalence of
categories

FunUlt(M,Mod(C)) ' Funcoh(C,FunUlt(M, Set)).

We can regard the construction C 7→ Mod(C) as a contravariant functor from the 2-category of pretopoi
(where morphisms are functors that preserve finite limits, finite coproducts, and effective epimorphisms)
to the 2-category of ultracategories (where morphisms are ultrafunctor). We can interpret Corollary 8 as
asserting that that this construction admits a right adjoint

{Ultracategories}op → {Pretopoi} M 7→ FunUlt(M, Set).

In particular, for every pretopos C, we have a unit map

u : C→ FunUlt(Mod(C), Set),

which carries each object CinC to the ultrafunctor given by evaluation at C. We saw in the previous lecture
that this functor is an equivalence when C is small.
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Corollary 9 (Strong Conceptual Completeness). Let C and C′ be pretopoi. If C′ is small, then the canonical
map

θ : Funcoh(C,C′)→ FunUlt(Mod(C′),Mod(C))

is an equivalence of categories.

Proof. Using the adjunction of Corollary 8, we can identify θ with the map

Funcoh(C,C′)→ Funcoh(C,FunUlt(Mod(C′), Set))

given by composition with the unit map u : C′ → FunUlt(Mod(C′), Set).

Remark 10. Makkai’s strong conceptual completeness theorem can be interpeted as a kind of duality
between the theory of pretopoi (having to do with the syntax of first-order logic) and the theory of ultracate-
gories (which is a way of capturing the semantics of first-order logic). Concretely, this duality is implemented
by the category Set of sets, which simultaneously has the structure of a pretopos and an ultracategory (more-
over, these structures are “compatible” by virtue of Corollary 2). It follows that for every pretopos C, the
category Mod(C) of pretopos morphisms from C to Set has the structure of an ultracategory, and that for
every ultracategory M the category FunUlt(M, Set) of ultrafunctors from M to Set has the structure of a
pretopos.

Corollary 11. The construction C 7→ Mod(C) determines a fully faithful embedding of 2-categories

{Small pretopoi}op ↪→ {Ultracategories}.

It follows immediatey from the definitions that an ultrafunctor F : M→M′ is invertible (in the 2-category
of ultracategories) if and only if it is an equivalence (in particular if F is an equivalence of categories, then
a homotopy inverse F−1 to F can also be regarded as an ultrafunctor). We therefore obtain the following:

Corollary 12 (Makkai-Reyes Conceptual Completeness Theorem). Let f : C→ C′ be a morphism of small
pretopoi. If the induced map Mod(C′)→ Mod(C) is an equivalence of categories, then f is an equivalence of
categories.

Remark 13. Note that the analogue Corollary ?? would not hold if we were to allow C and C′ to be arbitrary
coherent categories: the canonical map from a coherent category C to its pretopos completion Ceq induces an
equivalence of categories of models Mod(Ceq)→ Mod(C), but is generally not an equivalence. Consequently,
we can regard Corollary ?? as evidence that pretopoi are a good class of objects to work with. For example,
if T is a first-order theory, then the syntactic category Syn(T ) is the “maximal” enlargement of the weak
syntactic category Syn0(T ) with the same semantics.

Corollary 11 can be considered as a categorified version of Stone duality, which establishes a fully faithful
embedding

{Boolean algebras}op ↪→ {Compact Hausdorff spaces}
(whose essential image is the category Stone of Stone spaces). In fact, it is even a generalization of Stone
duality: there is a commutative diagram

{Boolean algebras}op //

��

{Compact Hausdorff Spaces}

��
{Small pretopoi}op Mod // {Ultracategories}

where the left vertical map is given by pretopos completion and the right vertical map associates to each
compact Hausdorff space the associated ultraset (see Lecture 26X).

Warning 14. The fully faithful embedding of Corollary 11 is not essentially surjective. For example, if X
is a compact Hausdorff space which is not a Stone space, then X (regarded as an ultracategory with only
identity morphisms) does not belong to the essential image.
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