Lecture 28X-Ultrafunctors to Set

April 18, 2018

Let Set denote the category of sets. Then Set can be regarded as an ultracategory: for every ultrafilter \mathcal{U} on a set I, we define $P^{\mathcal{U}}: \operatorname{Set}^I \to \operatorname{Set}$ by the formula

$$P^{\mathcal{U}}\{S_i\}_{i\in I} = (\prod_{i\in I} S_i)/\mathcal{U}.$$

Our goal in this lecture is to describe the category $\operatorname{Fun}^{\operatorname{Ult}}(\mathcal{M},\operatorname{Set})$ of Set-valued ultrafunctors on \mathcal{M} , where \mathcal{M} is an arbitrary ultracategory. For this, it will be more convenient to work at the level of ultracategory fibrations.

Construction 1. We define a category Stone_{Set} as follows:

- The objects of Stone_{Set} are pairs (X, \mathcal{O}_X) , where X is a Stone space and \mathcal{O}_X is a sheaf of sets on X.
- A morphism from (X, \mathcal{O}_X) to (Y, \mathcal{O}_Y) in Stone_{Set} consists of a continuous map $f: X \to Y$ together with a map $f^* \mathcal{O}_Y \to \mathcal{O}_X$ of Set-valued sheaves on X.

We say that an object of Stone_{Set} is *free* if it can be written as a coproduct $\coprod_{i\in I}(\{i\}, S_i)$, for some family of sets $\{S_i\}_{i\in I}$ indexed by a set I. Note that this coproduct can be written as (X, \mathcal{O}_X) , where $X = \beta I$ is the Stone-Čech compactification of I and the stalk of \mathcal{O}_X at an ultrafilter $\mathcal{U} \in \beta I$ is given by

$$\mathfrak{O}_{X,\mathfrak{U}}=(\prod_{i\in I}S_i)/\mathfrak{U}$$
.

We let Stone_{Set} denote the full subcategory of Stone_{Set} spanned by the free objects.

Remark 2. Less explicitly, we can describe Stone^{fr}_{Set} as the category Stone^{fr}_C, where \mathcal{C} is the pretopos of coherent objects of the classifying topos $\mathcal{E}_{Set} = \operatorname{Fun}(\operatorname{Set}_{fin},\operatorname{Set})$ (so that $\operatorname{Mod}(\mathcal{C})$ equivalent to the category of sets).

Note that we have an evident forgetful functor $Stone_{Set}^{fr} \to Stone^{fr}$, which is an ultracategory fibration. Consequently, if \mathcal{M} is an ultracategory with associated ultracategory fibration $\pi: \mathcal{E} \to Stone^{fr}$, then the category $Fun^{Ult}(\mathcal{M}, Set)$ of ultrafunctors from \mathcal{M} to Set can be identified with the opposite of the category $Mor(\mathcal{E}, Stone_{Set}^{fr})$ of morphisms of ultracategory fibrations from \mathcal{E} to $Stone_{Set}^{fr}$. Before we can describe the classification of such functors, we need a few preliminary remarks.

Lemma 3. Let $\pi: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}$ be an ultracategory fibration. Suppose we are given an object $E \in \mathcal{E}$ with $\pi(E) = \beta I$ for some set I. For each element $i \in I$, choose a locally π -Cartesian morphism $f_i: E_i \to E$ lying over the inclusion map $\iota_i: \{i\} \hookrightarrow \beta I$ in $\operatorname{Stone}^{\operatorname{fr}}$. Then the morphisms f_i exhibit E as the coproduct of the objects E_i in \mathcal{E} .

Proof. Let E' be any other object of \mathcal{E} . We have a commutative diagram

$$\begin{array}{ccc} \operatorname{Hom}_{\operatorname{\mathcal{E}}}(E,E') & & \stackrel{\circ f_{\bullet}}{\longrightarrow} \prod_{i \in I} \operatorname{Hom}_{\operatorname{\mathcal{E}}}(E_{i},E') \\ & & \downarrow & & \downarrow \\ \operatorname{Hom}_{\operatorname{Stone^{fr}}}(\beta I,\pi(E')) & & \longrightarrow \prod_{i \in I} \operatorname{Hom}_{\operatorname{Stone^{fr}}}(\{i\},\pi(E')) \end{array}$$

and we wish to show that the upper horizontal map is bijective. Since the bottom horizontal map is bijective, it will suffice to show that the diagram is a pullback square. Equivalently, we wish to show that for every continuous map $g: \beta I \to \pi(E')$, the induced map

$$\operatorname{Hom}_{\mathcal{E}_{\beta I}}(E, g^*E') \to \prod_{i \in I} \operatorname{Hom}_{\mathcal{E}_{\{i\}}}(\iota_i^*E, (g \circ \iota_i)^*E')$$

is a bijection. This follows from our assumptions that the functor $(\prod \iota(i)^*): \mathcal{E}_{\beta I} \to \prod_{i \in I} \mathcal{E}_{\{i\}}$ is an equivalence of categories and that the comparison maps $\iota_i^* \circ g^* \to (g \circ \iota_i)^*$ are isomorphisms.

Corollary 4. Let $\pi: \mathcal{E} \to \text{Stone}^{\text{fr}}$ be an ultracategory fibration. Then the category \mathcal{E} admits coproducts.

Proof. Let $\mathcal{E}_* = \pi^{-1}\{*\}$. By virtue of Lemma 3, every object of \mathcal{E} can be written as a coproduct of objects of \mathcal{E}_* . It will therefore suffice to show that every collection of objects $\{E_i \in \mathcal{E}_*\}_{i \in I}$ admits a coproduct. This follows from Lemma 3, since the functor $(\prod \iota(i)^*) : \mathcal{E}_{\beta I} \to \prod_{i \in I} \mathcal{E}_{\{i\}}$ is essentially surjective.

Remark 5. It follows from the proof of Corollary 4 that if \mathcal{D} is any category which admits coproducts, then a functor $F: \mathcal{E} \to \mathcal{D}$ preserves coproducts if and only if it preserves coproducts of families $\{E_i\}_{i \in I}$ where each E_i belongs to \mathcal{E}_* . In particular, the projection map $\pi: \mathcal{E} \to \text{Stone}^{\text{fr}}$ preserves coproducts.

Corollary 6. Let $\pi: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}$ and $\pi': \mathcal{E}' \to \operatorname{Stone}^{\operatorname{fr}}$ be ultracategory fibrations. Then any morphism of ultracategory fibrations $F: \mathcal{E} \to \mathcal{E}'$ preserves coproducts.

Proof. By virtue of Remark 5, it will suffice to show that F preserves the coproduct of any family of objects $\{E_i\}_{i\in I}$ belonging to \mathcal{E}_* . Choose a collection of maps $f_i: E_i \to E$ in \mathcal{E} which exhibit E as a coproduct of $\{E_i\}_{i\in I}$. It follows from Lemma 3 (and the uniqueness of coproducts) that each f_i is locally π -Cartesian. It follows that each $F(f_i)$ is locally π -Cartesian, so that the morphisms $F(f_i)$ exhibit F(E) as a coproduct of the family $\{F(E_i)\}_{i\in I}$ (by virtue of Lemma 3, applied to the ultracategory fibration π).

Notation 7. For every object $(X, \mathcal{O}_X) \in \operatorname{Stone}_{\operatorname{Set}}^{\operatorname{fr}}$, we let $\Gamma(X; \mathcal{O}_X)$ denote the set $\mathcal{O}_X(X)$. Then the construction $(X, \mathcal{O}_X) \mapsto \Gamma(X; \mathcal{O}_X)$ determines a functor $\Gamma: \operatorname{Stone}_{\operatorname{Set}}^{\operatorname{fr}} \to \operatorname{Set}^{\operatorname{op}}$. This functor is representable: we have canonical bijections

$$\Gamma(X; \mathcal{O}_X) \simeq \operatorname{Hom}_{\operatorname{Stone}_{\operatorname{Set}}^{\operatorname{fr}}}((X, \mathcal{O}_X), (*, \mathbf{1})),$$

where * denotes the one-point space and $\mathbf{1} \in \operatorname{Shv}(*)$ denotes the final object (corresponding to the oneelement set). It follows that the functor Γ carries coproducts in Stone^{fr}_{Set} to products in Set.

We can now state our main result.

Theorem 8. Let $\pi: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}$ be an ultracategory fibration. Then composition with the functor $\Gamma: \operatorname{Stone}^{\operatorname{fr}}_{\operatorname{Set}} \to \operatorname{Set}^{\operatorname{op}}$ induces a fully faithful embedding

$$\operatorname{Mor}(\mathcal{E}, \operatorname{Stone}_{\operatorname{Set}}^{\operatorname{fr}}) \to \operatorname{Fun}(\mathcal{E}, \operatorname{Set}^{\operatorname{op}}),$$

whose essential image consists of those functors $T: \mathcal{E} \to \operatorname{Set}^{\operatorname{op}}$ which satisfy the following pair of conditions:

(a) The functor T carries coproducts in E to products of sets.

(b) For each object $E \in \mathcal{E}$ having image $X = \pi(E)$ and each point $x \in X$, the canonical map

$$\varinjlim_{x \in U} T(E_U) \to T(E_{\{x\}})$$

is a bijection. Here the direct limit is taken over all clopen neighborhoods U of x, $E_U \in \mathcal{E}_U$ denotes the pullback of $E \in \mathcal{E}_X$ under the inclusion $U \hookrightarrow X$, and $E_{\{x\}} \in \mathcal{E}_{\{x\}}$ is defined similarly.

Proof. If $F: \mathcal{E} \to \operatorname{Stone}_{\operatorname{Set}}^{\operatorname{fr}}$ is a morphism of ultracategory fibrations, then F preserves coproducts (Corollary 6), so that $\Gamma \circ F$ carries coproducts in \mathcal{E} to products of sets (Notation 7). Moreover, if E and X are as in (b), then we can write $F(E) = (X, \mathcal{O}_X)$ for some sheaf of sets \mathcal{O}_X on X. Our assumption that F is a morphism of ultractegory fibrations (and therefore preserves locally Cartesian morphisms) supplies a canonical isomorphisms $F(E_U) \simeq (U, \mathcal{O}_X|_U)$ for $U \subseteq X$ clopen and $F(E_{\{x\}}) \simeq (\{x\}, \mathcal{O}_{X,x})$, so that

$$(\Gamma \circ F)(E_{\{x\}} \simeq \mathfrak{O}_{X,x} \simeq \varinjlim_{x \in U} \mathfrak{O}_X(U) = \varinjlim_{x \in U} (\Gamma \circ F)(E_U).$$

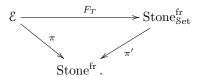
Consequently, every functor belonging to the essential image of composition with Γ satisfies conditions (a) and (b).

Conversely, suppose we are given a functor $T: \mathcal{E} \to \operatorname{Set}^{\operatorname{op}}$ satisfying (a) and (b). We define a functor $F_T: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}_{\operatorname{Set}}$ by the formula $F_T(E) = (X, \mathcal{O}_X)$, where $X = \pi(E)$ and $\mathcal{O}_X(U) = T(E_U)$ for $U \subseteq X$ clopen (condition (a) guarantees that the construction $U \mapsto T(E_U)$ carries coproducts of disjoint clopen subsets of X to products of sets, so this formula determines a sheaf \mathcal{O}_X on X which is unique up to canonical isomorphism). For each clopen set $U \subseteq X$, we can identify E_U with the coproduct of the objects $E_{\{x\}}$ where x ranges over the isolated points of U (Lemma 3), so that condition (a) gives

$$\mathfrak{O}_X(U) \simeq \prod_{x \in U, x \text{ isolated}} \, \mathfrak{O}_{X,x} \,.$$

It follows that (X, \mathcal{O}_X) , is given by the coproduct of $(\{x\}, \mathcal{O}_{X,x})$ as x ranges over the isolated points of X, so that (X, \mathcal{O}_X) belongs to $\text{Stone}_{\text{Set}}^{\text{fr}}$.

By construction, F_T is a functor from \mathcal{E} to Stone_{Set} which fits into a commutative diagram



We claim that F_T is a morphism of ultracategory fibrations. In other words, we wish to show that for each locally π -Cartesian morphism $g: E \to E'$ in \mathcal{E} , the image $F_T(g)$ is a locally π' -Cartesian morphism in Stones. Write $F_T(E) = (X, \mathcal{O}_X)$ and $F_T(E') = (X', \mathcal{O}_{X'})$, so that $\pi(g)$ is a continuous map from X to X'. We then have a canonical map $\pi(g)^* \mathcal{O}_{X'} \to \mathcal{O}_X$, and we wish to show that this map of sheaves is an isomorphism after taking the stalk at each *isolated* point $x \in X$. Equivalently, we must show that the canonical map

$$\varinjlim_{\pi(g)(x)\in U} T(E'_U) \to T(E_{\{x\}})$$

is bijective, where U ranges over the collection of clopen subsets of X' containing $\pi(g)(x)$. This follows immediately from (b).

We leave it to the reader to verify that the constructions $F \mapsto \Gamma \circ F$ and $T \mapsto F_T$ are mutually inverse (up to canonical isomorphism).

If \mathcal{C} is a small pretopos, then each object $C \in \mathcal{C}$ determines a morphism of ultracategory fibrations $F^C: \operatorname{Stone}^{\operatorname{fr}}_{\mathcal{C}} \to \operatorname{Stone}^{\operatorname{fr}}_{\operatorname{Set}}$, given by $(X, \mathcal{O}_X) \mapsto (X, \mathcal{O}_X^C)$. The construction $C \mapsto F^C$ then determines a functor $\mathcal{C} \to \operatorname{Mor}(\mathcal{E}, \operatorname{Stone}^{\operatorname{fr}}_{\operatorname{Set}})^{\operatorname{op}}$. In Lecture 23X, we showed that the composition

$$\mathcal{C} \to \operatorname{Mor}(\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr}}, \operatorname{Stone}_{\operatorname{Set}}^{\operatorname{fr}})^{\operatorname{op}} \xrightarrow{\Gamma \circ} \operatorname{Fun}(\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr}, \operatorname{op}}, \operatorname{Set})$$

$$C \mapsto ((X, \mathcal{O}_X) \mapsto \Gamma(X; \mathcal{O}_X^C))$$

is a fully faithful embedding, whose essential image is spanned by those functors $Stone_{\mathcal{C}}^{fr,op} \to Set$ satisfying conditions (a) and (b) of Theorem 8. Combining this with Theorem 8, we obtain the following:

Corollary 9. Let \mathcal{C} be a small pretopos. Then the construction $C \mapsto F^C$ induces an equivalence of categories

$$\mathcal{C} \to \operatorname{Mor}(\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr}}, \operatorname{Stone}_{\operatorname{Set}}^{\operatorname{fr}})^{\operatorname{op}}.$$

Or, stated in terms of ultrafunctors:

Corollary 10 (Makkai). Let C be a small pretopos. Then there is an equivalence of categories

$$\mathcal{C} \to \operatorname{Fun}^{\operatorname{Ult}}(\operatorname{Mod}(\mathcal{C}),\operatorname{Set}),$$

which carries an object C to the ultrafunctor $Mod(\mathcal{C}) \to Set$ given by evaluation at C.