Lecture 28X-Ultrafunctors to Set

April 18, 2018

Let Set denote the category of sets. Then Set can be regarded as an ultracategory: for every ultrafilter
U on a set I, we define PU : Set! — Set by the formula

PYYS;}ier = (I S0/ 1.

iel

Our goal in this lecture is to describe the category Fun"" (M, Set) of Set-valued ultrafunctors on M, where
M is an arbitrary ultracategory. For this, it will be more convenient to work at the level of ultracategory
fibrations.

Construction 1. We define a category Stoneget as follows:

e The objects of Stonege; are pairs (X, Ox ), where X is a Stone space and Ox is a sheaf of sets on X.

e A morphism from (X,0x) to (Y,0y) in Stonege; consists of a continuous map f : X — Y together
with a map f* Oy — Ox of Set-valued sheaves on X.

We say that an object of Stonescs is free if it can be written as a coproduct ][, ;({i}, 5;), for some family
of sets {Si}z‘el indexed by a set I. Note that this coproduct can be written as (X, 0x), where X = I is
the Stone-Cech compactification of I and the stalk of Ox at an ultrafilter U € 51 is givenby

Oxu = ([]S)/u.

i€l
We let Stonell., denote the full subcategory of Stonese; spanned by the free objects.

Remark 2. Less explicitly, we can describe Stonel, as the category Stone, where € is the pretopos of
coherent objects of the classifying topos €ger = Fun(8etsy, Set) (so that Mod(€) equivalent to the category
of sets).

Note that we have an evident forgetful functor StonefsrCt — Stonefr, which is an ultracategory fibration.
Consequently, if M is an ultracategory with associated ultracategory fibration 7 : & — Stone™, then the
category Fun"" (M, 8et) of ultrafunctors from M to Set can be identified with the opposite of the category
Mor(€&, Stonel,,) of morphisms of ultracategory fibrations from & to Stonel.,. Before we can describe the
classification of such functors, we need a few preliminary remarks.

Lemma 3. Let 7 : & — Stone®™ be an ultracategory fibration. Suppose we are given an object E € & with
m(E) = BI for some set I. For each element i € I, choose a locally 7-Cartesian morphism f; : E; — E lying
over the inclusion map t; : {i} < BI in Stone™. Then the morphisms f; exhibit E as the coproduct of the
objects E; in E.



Proof. Let E’ be any other object of &. We have a commutative diagram

ofe

Home (E, E')

|

HomStoncﬁ" (517 7T<E/)) - Hie[ HOInStoncfr ({7’}7 7T(E‘/))

[[;e; Home (E;, EY)

and we wish to show that the upper horizontal map is bijective. Since the bottom horizontal map is bijective,
it will suffice to show that the diagram is a pullback square. Equivalently, we wish to show that for every
continuous map ¢ : SI — w(E’), the induced map

Home,, (E,g"E') — H Home ., (17 E, (g o 1i)*E')
i€l

is a bijection. This follows from our assumptions that the functor ([J¢(i)*) : €s1 — [l;c; €qiy is an
equivalence of categories and that the comparison maps ¢} o g* — (g o ¢;)* are isomorphisms.

Corollary 4. Let w: & — Stone®™ be an ultracategory fibration. Then the category & admits coproducts.

Proof. Let €, = m~1{x}. By virtue of Lemma 3, every object of € can be written as a coproduct of objects
of &,. Tt will therefore suffice to show that every collection of objects {E; € €, }ier admits a coproduct. This
follows from Lemma 3, since the functor (J]¢(i)*) : €51 — [[,c; €14} is essentially surjective. O

Remark 5. It follows from the proof of Corollary 4 that if D is any category which admits coproducts, then
a functor F : & — D preserves coproducts if and only if it preserves coproducts of families {E;};c; where
each E; belongs to €,. In particular, the projection map 7 : &€ — Stone'” preserves coproducts.

Corollary 6. Let 7 : & — Stone™ and 7' : & — Stone™ be ultracategory fibrations. Then any morphism of
ultracategory fibrations F : & — &' preserves coproducts.

Proof. By virtue of Remark 5, it will suffice to show that F' preserves the coproduct of any family of objects
{E;}icr belonging to £,. Choose a collection of maps f; : E; — E in € which exhibit F as a coproduct of
{FE;}ier. Tt follows from Lemma 3 (and the uniqueness of coproducts) that each f; is locally w-Cartesian. It
follows that each F(f;) is locally n’-Cartesian, so that the morphisms F(f;) exhibit F(E) as a coproduct of
the family {F(E;)}icr (by virtue of Lemma 3, applied to the ultracategory fibration 7’). O

Notation 7. For every object (X,0x) € Stonel ., we let ['(X;Ox) denote the set Ox(X). Then the
construction (X, Ox) — I'(X;Ox) determines a functor T' : Stonell,, — Set°P. This functor is representable:
we have canonical bijections

F(X7 OX) = H:OHlStonefSrCt ((X7 OX)? (*’ 1))7

where * denotes the one-point space and 1 € Shv(x) denotes the final object (corresponding to the one-
element set). Tt follows that the functor I' carries coproducts in Stonel,, to products in Set.

We can now state our main result.

Theorem 8. Let 7w : & — Stone™ be an ultracategory fibration. Then composition with the functor T :

Stonell . — Set? induces a fully faithful embedding

Mor(&, Stonel ) — Fun(&, Set°P),
whose essential image consists of those functors T : & — 8et°® which satisfy the following pair of conditions:

(a) The functor T' carries coproducts in & to products of sets.



(b) For each object E € & having image X = w(E) and each point x € X, the canonical map

EAS

<

is a bijection. Here the direct limit is taken over all clopen neighborhoods U of x, Fy € Ey denotes
the pullback of E € &x under the inclusion U — X, and E(,y € &,y is defined similarly.

Proof. T F : &€ — Stonegret is a morphism of ultracategory fibrations, then F' preserves coproducts (Corollary
6), so that " o F' carries coproducts in € to products of sets (Notation 7). Moreover, if E and X are as
in (b), then we can write F(FE) = (X,0x) for some sheaf of sets Ox on X. Our assumption that F
is a morphism of ultractegory fibrations (and therefore preserves locally Cartesian morphisms) supplies a
canonical isomorphisms F(Ey) ~ (U,Ox |vy) for U C X clopen and F(E,;) ~ ({2}, 0x ), so that

(Do F)(Eqyy ~ Ox ;= lim 0x (U) = lim (I 0 F)(Ep).
zeU zeU

Consequently, every functor belonging to the essential image of composition with I" satisfies conditions (a)
and (b).

Conversely, suppose we are given a functor T : & — Set°" satisfying (a) and (b). We define a functor
Fr : & — Stonel, by the formula Fr(E) = (X,0x), where X = n(E) and Ox(U) = T(Ey) for U C X
clopen (condition (a) guarantees that the construction U +— T(Ey) carries coproducts of disjoint clopen
subsets of X to products of sets, so this formula determines a sheaf Ox on X which is unique up to canonical
isomorphism). For each clopen set U C X, we can identify Ey with the coproduct of the objects £y, where
x ranges over the isolated points of U (Lemma 3), so that condition (a) gives

ox(W)~ J[  Oxa.

zeU,z isolated

It follows that (X, Ox), is given by the coproduct of ({z},Ox ) as x ranges over the isolated points of X,
so that (X, 0x) belongs to Stonel .
By construction, Fr is a functor from € to Stonege; which fits into a commutative diagram

e r

fr
Stoneg,,

s
Tr/
Stone'™ .

We claim that Fp is a morphism of ultracategory fibrations. In other words, we wish to show that for
each locally m-Cartesian morphism ¢g : E — E’ in &, the image Fr(g) is a locally n’-Cartesian morphism
in Stonel,. Write Fp(E) = (X,0x) and Fp(E') = (X’,0x/), so that 7(g) is a continuous map from X
to X’. We then have a canonical map 7(g)* Ox, — Ox, and we wish to show that this map of sheaves is
an isomorphism after taking the stalk at each isolated point x € X. Equivalently, we must show that the
canonical map
lim  T(Ey) = T(Eqa)
m(g)(z)€U

is bijective, where U ranges over the collection of clopen subsets of X’ containing m(g)(z). This follows
immediately from (b).

We leave it to the reader to verify that the constructions F' — I' o F' and T+ Fp are mutually inverse
(up to canonical isomorphism). O



If C is a small pretopos, then each object C' € C determines a morphism of ultracategory fibrations
FC : Stonell — Stonel ., given by (X,0x) — (X,0%). The construction C' — FC then determines a
functor € — Mor(€, Stonegct)‘)p. In Lecture 23X, we showed that the composition

@ — Mor(Stone's, Stonell , )°P Lo, Fun(Stoneg’()p7 Set)

C = ((X,0x) = I'(X;0%))

is a fully faithful embedding, whose essential image is spanned by those functors Stomeg’Op — Set satisfying
conditions (a) and (b) of Theorem 8. Combining this with Theorem 8, we obtain the following:

Corollary 9. Let C be a small pretopos. Then the construction C +— F induces an equivalence of categories
@ — Mor(Stonel, Stonel . )°P.
Or, stated in terms of ultrafunctors:

Corollary 10 (Makkai). Let C be a small pretopos. Then there is an equivalence of categories
€ — Fun""(Mod(€), Set),

which carries an object C' to the ultrafunctor Mod(C) — Set given by evaluation at C.



