Lecture 27X-Ultrafunctors

April 17, 2018

We now study functors between ultracategories.

Definition 1. Let 7 : & — Stone™ and 7/ : & — Stone™ be ultracategory fibrations. A morphism of
ultracategory fibrations from € to &’ is a functor F : & — &' with the following properties:

(1) The diagram

Stone'

commutes. In particular, for every X € Stone'™, F induces a functor Fy : Ex — &y

(2) The functor F carries locally m-Cartesian morphisms of € to locally 7/-Cartesian morphisms of €’.

We let Mor(€,¢&") denote the full subcategory of Fun(€, &") X Fun(€,Stonef) 17} consisting of morphisms of
ultracategory fibrations from € to &’.

We will be primarily interested in the following example:

Proposition 2. Let C and C' be small pretopoi, and let f : C — €' be a pretopos morphism (that is, a
functor which preserves finite limits, finite coproducts, and effective epimorphisms). If X is a topological
space and Ox : € — Shv(X) is an X-model of €', then Ox of : € — Shv(X) is an X -model of C. It follows
that the construction (X,0x) — (X, O0x of) determines a functor F : Topes — Tope. Then:

1) The functor F carries Stonee: into Stonee and Stonel, into Stonel.
e e
(2) The induced map F : Stonee: — Stonee is a morphism of ultracategory fibrations.

Proof. Tt is clear that F carries Stonees into Stonee. Let us identify Stoneg” and Stonep; with the full
subcategories of Fun(€, 8et) and Fun(€’,8et) spanned by those functors which preserve finite limits and
effective epimorphisms. Under these identifications, the functor F |Stonee, 1S given by precomposition with f.
It follows that ﬁ|smne o : Stoneer — Stonee commutes with coproducts (since these correspond to products
in Fun(€, Set) and Fun(€’, Set)). Since F carries Mod(€')°P C Stonee into Mod(€) C Stoneg, it restricts to
a functor F : Stonel, — Stonell. By construction, this functor fits into a commutative diagram

F

Stoneer Stonee

Stone™ .

We claim that F carries locally 7m-Cartesian morphisms in Stonef@rf to locally w-Cartesian morphisms in
Stonel. Note that a morphism ¢ : (X, 0x) — (¥, Oy) in the category Stonel, is locally 7’-Cartesian if and
only if, for every isolated point x € X, the induced map Oy, () — Ox ;. is an isomorphism in Mod(€"). Tt then
follows that Oy, () of — Ox,z of is an isomorphism of models of €, so that F(g) is locally m-Cartesian. [



We can now give a precise statement of Makkai’s theorem:

Theorem 3 (Strong Conceptual Completeness). Let C and €' be small pretopoi, and let FunCOh((?7 € denote
the category of pretopos morphisms from C to €. Then the preceding construction induces an equivalence of

categories
Fun®" (€, €') — Mor(Stonee, Stonee)°P.

We will give the proof of Theorem 3 over the next two lectures. First, let us try to describe more
concretely what it is saying. Let’s return to the case of a general pair of ultracategory fibrations

7+ & — Stone'™ 7’ . & — Stone' .
Suppose we are given a continuous map f : I — gJ in Stone®. Then pullback along f induces functors
(ng—>851 E/BJ%E/BI,

both of which we will denote by f*. Condition (2) guarantees that the diagram

85‘]#)85[

iFﬂJ lFﬁf

f
8%JH823[.

Let M = €% and M’ = &/°? denote the underlying categories of & and &', respectively. Then F induces
a functor Fy : M — M. For every set I, we have equivalences

eh~mh g =M

which fit into a commutative diagram

BI
ML Fy M

Consequently, a morphism of ultracategory fibrations F : & — &’ is largely determined by the underlying
functor Fy : M — M. However, the functor Fj is not arbitrary: applying the preceding paragraph in the
case where I = x is a single point and J is an arbitrary set, (so that f : I — SJ determines an ultrafilter
U on J), we deduce that Fy “commutes with ultraproducts indexed by U”, in the sense that we have a
commutative diagram

W
lP“ lP’“
M —2
where P¥ : M? — M and P'% : M'T — M are the maps given by f*. This motivates the following:
Definition 4. Let M and M’ be ultracategories, equipped with functors
P —m  PYvT W
where U is an ultrafilter on a set I, together with isomorphisms

eri: PY ~ev; e P'U~ev;



when U is the principal ultrafilter associated to an element ¢ € I, and “diagonal” maps
TR :Puz\?. - Pu ° {PVi}iE[ ,U)i(’v. :P/UIV. — Plu o {P/Vi}ie[.

when U is an ultrafilter on a set I and {V;};cs is an I-indexed collection of ultrafilters on a set J.
An ultrafunctor from M to M’ consists of the following data:

e A functor Fy: M — M.

e For every set I and every ultrafilter U on a set I, an isomorphism yy : P'% o Ff ~ Fjy o PY of functors
from M’ to M.

These isomorphisms are required to satisfy the following conditions:
e If U is the principal ultrafilter associated to an element i € I, then the diagram

Yu
PUYoFl ——~ FyopPY

/ .
le“ ler,;

ev; OF({ —— > Fyoev;

commutes (in the category of functors from M’ to M.

e If U is an ultrafilter on a set I and {V;};cs is an I-indexed collection of ultrafilters on a set J, then
the diagram

YU Ve

P/UZV’OF(SJ FOOPUZV.

llfu,v. l““*v'

PUo{PViticioFy 2 P'Uo Fl o {PVi};e; —%> Fyo PUo {PVi}ie;

commutes (in the category of functors from M’ to M’).

Given ultrafunctors (Fp, {yu}) and (F}, {v;}) from M to M’, we will say that a natural transformation
p: Fo — Fj is a morphism of ultrafunctors if, for every ultrafilter U on a set I, the diagram of natural
transformations

I
pru OFOI 4 pu oFél

e |

FooPu4p>FéoPu.

commutes. We let Fun!" (M, M) denote the category whose objects are ultrafunctors from M to M’ and
whose morphisms are morphisms are ultrafunctors.

Warning 5. Makkai introduced a notion of ultrafunctor between ultracategories which is a priori more
restrictive than our Definition 4: that is, Makkai requires a larger collection of diagrams to commute.
However, the difference turns out to be irrelevant in the primary case of interest to us (where M is the
category of models of a small pretopos €), by virtue of Theorem 8 below.

Example 6. Let X and X’ be compact Hausdorff spaces. We saw in the previous lecture that we can think of
X and X' as ultrasets: that is, as ultracategories with only trivial morphisms. In this situation, Definition 4
simplifies considerably: an ultrafunctor from X to X' is simply a map of sets Fy : X — X’ with the following
property: for every map of sets f : I — X and every ultrafilter U on I, we have Fo(PU(f)) = P'Y(Fyo f)



in X’. By general nonsense, it suffices to check this equality in the case where I = X and f is the identity.
It follows that Fy is an ultrafunctor if and only if it is a morphism of $-algebras: that is, the diagram

BX B(Fo) BX

|,

X —2s X

commutes, where the vertical maps are the continuous extensions of idx and idx-, respectively. This is
equivalent to the requirement that Fy is continuous.

Let 7 : & — Stone™ and 7/ : & — Stone™ be ultracategory fibrations, with underlying ultracategories M
and M/, respectively. If F': & — & is a morphism of ultracategory fibrations (in the sense of Definition 1),
then it is not difficult to see that the underlying functor Fy : M — M’ has the structure of an ultrafunctor
(with isomorphisms 7y defined as in the discussion preceding Definition 4). Passage from F to Fy determines
a functor

Mor(&, &") — Fun"* (v, M')°P.

Moreover, just as an ultracategory fibration can be recovered (up to equivalence) from its underlying ultra-
category, a morphism of ultracategory fibrations can be recovered (up to isomorphism) from its underlying
ultrafunctor. More precisely, we can apply the analysis of Lecture 25X to obtain the following:

Proposition 7. Let m : & — Stone™ and 7’ : & — Stone™ be ultracategory fibrations with underlying
ultracategories M = € and M’ = E'°P. Then the preceding construction induces an equivalence of categories

Mor (€&, &")°P — Fun"* (M, M').
Combining this result with Theorem 3, we obtain the following reformulation of Theorem 3:

Theorem 8 (Strong Conceptual Completeness). Let € and €' be small pretopoi and let Fun®" (€, €') denote
the category of pretopos morphisms from € to €. Then there is a canonical equivalence of categories

Fun®" (€, ") — Fun""(Mod(€), Mod(€)).



