Lecture 26X-Ultrasets

April 14, 2018

Our goal in this lecture is to unwind the definitions of the preceding lectures in a particularly simple case.

Definition 1 (Ultrasets-Version 1). An *ultraset* is an ultracategory fibration $\pi: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}$ with the property that each fiber $\pi^{-1}\{\beta I\}$ is a category with only identity morphisms: that is, it is a set, regarded as a category.

Note that if $\pi: \mathcal{E} \to \mathcal{B}$ is any local Grothendieck fibration whose fibers are sets, then π is automatically a Grothendieck fibration (since every natural transformation between functors $\mathcal{E}_{B'} \to \mathcal{E}_B$ is automatically invertible). It is therefore a *fibration in sets*, which is classified by a functor $\mathcal{B}^{\text{op}} \to \text{Set}$, given by $B \mapsto \mathcal{E}_B$. In the case where $\mathcal{B} = \text{Stone}^{\text{fr}}$, such a fibration $\pi: \mathcal{E} \to \mathcal{B}$ is an ultracategory fibration if and only if the associated functor $\mathcal{B}^{\text{op}} \to \text{Set}$ preserves (possibly infinite) products. We can therefore reformulate Definition 1 as follows:

Definition 2 (Ultrasets-Version 2). An *ultraset* is a functor $F : \text{Stone}^{\text{fr,op}} \to \text{Set}$ which carries coproducts in Stone^{fr} to products in Set (so that we have canonical isomorphisms $F(\beta I) = F(*)^I$).

We can obtain another equivalent formulation of Definition 2 using the notion of ultracategory introduced in Lecture 25X. Giving an ultraset (in the sense of either Definition 1 or 2) is equivalent to giving an ultracategory for which the underlying category \mathcal{M} is a set. In this case, the definition of an ultracategory simplifies substantially:

Definition 3 (Ultrasets-Version 3). An *ultraset* consists of the following data:

- (1) A set M.
- (2) For every set I and every ultrafilter \mathcal{U} on I, a map of sets $P^{\mathcal{U}}: M^I \to M$.

This data is required to satisfy the following conditions:

- (3) If \mathcal{U} is the principal ultrafilter associated to an element $i \in I$, then $P^{\mathcal{U}} : M^I \to M$ is given by projection onto the *i*th factor.
- (4) Given sets I and J, an ultrafilter \mathcal{U} on I, and a collection $\{\mathcal{V}_i\}_{i\in I}$ of ultrafilters on J, we have an equality

$$P^{\mathcal{U} \wr \mathcal{V}_{\bullet}} = P^{\mathcal{U}} \circ \{P^{\mathcal{V}_i}\}_{i \in I}$$

of functions from M^J into M.

Suppose that M is an ultraset in the sense of Definition 3. Taking I = M and $\mathrm{id}_M \in M^M$ to be the identity function, we see that the construction $\mathcal{U} \mapsto P^{\mathcal{U}}(\mathrm{id}_M)$ determines a function $r: \beta M \to M$. The structure of M as an ultraset is completely encoded by this function:

Lemma 4. Let M be an ultraset (in the sense of Definition 3). Then, for any set I, any ultrafilter \mathbb{U} on I, and any $f \in M^I$ (which we view as a function from I to M), we have

$$P^{\mathcal{U}}(f) = u(f_* \mathcal{U}).$$

Here $f_* U$ denotes the ultrafilter on M given by

$$(M_0 \in f_* \mathcal{U}) \Leftrightarrow (f^{-1}M_0 \in \mathcal{U}).$$

Proof. Set J = M. For each $i \in I$, let \mathcal{V}_i be the principal ultrafilter on J associated to the element $f(i) \in M$. Axiom (3) then gives $P^{\mathcal{V}_i}(\mathrm{id}_M) = \mathrm{id}_M(f_i) = f(i)$. Note that the composite ultrafilter $\mathcal{U} \wr \mathcal{V}_{\bullet}$ can be identified with $f_* \mathcal{U}$. Applying axiom (4), we obtain

$$u(f_* \mathcal{U}) = P^{\mathcal{U} \wr \mathcal{V}_{\bullet}}(\mathrm{id}_M) = P^{\mathcal{U}} \{ P^{\mathcal{V}_i} \{ \mathrm{id}_M \} \}_{i \in I} = P^{\mathcal{U}}(f).$$

Proposition 5. Let M be an ultraset (in the sense of Definition 3). Then the map $r: \beta M \to M$ defined above has the following properties:

- (a) The restriction of r to M is the identity map id_M (where we identify M with a subset of βM).
- (b) Let $\rho: \beta(\beta M) \to \beta M$ be the unique continuous map whose restriction to βM is the identity (where we identify βM with an open subset of $\beta(\beta M)$). Then we have a commutative diagram

$$\beta(\beta M) \xrightarrow{\rho} \beta M$$

$$\downarrow^{\beta(u)} \qquad \qquad \downarrow^{u}$$

$$\beta M \xrightarrow{u} M.$$

Proof. Assertion (a) is an immediate consequence of axiom (3) of Definition 3. To prove (b) let us apply axiom (4) in the case where $I = \beta M$, J = M, the construction $i \mapsto \mathcal{V}_i$ is the identity (that is, it associates to each element of βM the corresponding ultrafilter on M). Let \mathcal{U} be an ultrafilter on βM , which we can identify with a point of $\beta(\beta M)$. Then axiom (4) gives an equality

$$P^{\mathfrak{U}\wr\mathcal{V}_{\bullet}}(\mathrm{id}_M) = P^{\mathfrak{U}}\{P^{\mathfrak{V}}(\mathrm{id}_M)\}_{\mathfrak{V}\in\beta M} = P^{\mathfrak{U}}(u)$$

Unwinding the definitions, we see that $\mathcal{U} \wr \mathcal{V}_{\bullet}$ coincides with $\rho(\mathcal{U})$ as an ultrafilter on M, so the left hand side is given by $r(\rho(\mathcal{U}))$. On the other hand, Lemma 4 allows us to rewrite the right hand side as $r(r_*\mathcal{U})$.

Proposition ?? has a converse:

Proposition 6. Let M be a set equipped with a map $r: \beta M \to M$ satisfying conditions (a) and (b) of Proposition 5. Then M inherits the structure of an ultraset, given by

$$P^{\mathcal{U}}(f) = u(f_* \mathcal{U})$$

for $f \in M^I$ and $\mathcal{U} \in \beta I$.

Proof. We must show that $P^{\mathcal{U}}$ satisfies conditions (3) and (4) of Definition 3. Suppose first that \mathcal{U} is a principal ultrafilter on a set I and that $f \in M^I$. Then $f_*\mathcal{U}$ is the principal ultrafilter on $f(i) \in M$, so that $\mathcal{P}^{\mathcal{U}}(f) = u(f_*(\mathcal{U})) = u(f(i)) = f(i)$ by virtue of (a).

Now suppose we are given sets I and J and a collection of ultrafilters $\{\mathcal{V}_i\}_{i\in I}$ on the set J, so that the construction $i\mapsto \mathcal{V}_i$ determines a map of sets $g:I\to \beta J$. We wish to show that we have an equality

$$P^{\mathfrak{U}\wr\mathcal{V}_{\bullet}}(f)=P^{\mathfrak{U}}\{P^{\mathcal{V}_{i}}(f)\}_{i\in I}.$$

for each ultrafilter \mathcal{U} on the set I. Unwinding the definitions, we see that the left hand side is given (as a function of \mathcal{U}) by the composition

$$\beta I \xrightarrow{\beta g} \beta \beta J \xrightarrow{\beta \beta f} \beta \beta M \xrightarrow{\rho} \beta M \xrightarrow{u} M$$

while the right hand side is given by

$$\beta I \xrightarrow{\beta g} \beta \beta J \xrightarrow{\beta f_*} \beta \beta M \xrightarrow{\beta(u)} \beta M \xrightarrow{u} M;$$

these maps coincide by virtue of property (b).

We leave it to the reader to check that for a fixed set M, these constructions establish mutually inverse bijections

{Functions $P^{\mathfrak{U}}: M^I \to M$ satisfying Definition 3} \simeq {Functions $r: \beta M \to M$ satisfying (a) and (b)}.

This leads to another formulation:

Definition 7 (Ultrasets-Version 4). An *ultraset* is a set M equipped with a map $r: \beta M \to M$ satisfying conditions (a) and (b) of Proposition 5.

Let us give another interpretation of this definition. Let $\operatorname{Top_{ch}}$ denote the category of compact Hausdorff topological spaces and continuous maps. This category is equipped with a forgetful functor $G: \operatorname{Top_{ch}} \to \operatorname{Set}$. The forgetful functor G has a left adjoint F, which associates to each set I its Stone-Čech compactification βI , regarded as a topological space. The composition $\beta = G \circ F$ is the functor which associates to each set I the Stone-Čech compactification βI , regarded merely as a set. This realization endows β with the structure of a monad: that is, as an associative algebra in the category $\operatorname{Fun}(\operatorname{Set},\operatorname{Set})$ of endofunctors of Set. Explicitly, this algebra structure is encoded by a unit map

$$u: \mathrm{id}_{\mathrm{Set}} \to \beta$$
 $\rho: \beta \circ \beta \to \beta$.

Unwinding the definitions, we see that u associates to each set M the canonical inclusion $M \hookrightarrow \beta M$, while ρ associates to each set M the map $\beta\beta M \to \beta M$ appearing in Proposition 5. We can therefore restate Definition 7 in the language of monads:

Definition 8 (Ultrasets-Version 5). An *ultraset* is an algebra over the monad $\beta : \text{Set} \to \text{Set}$.

By general nonsense, the forgetful functor $G: \operatorname{Top}_{\operatorname{ch}} \to \operatorname{Set}$ factors through the category of algebras for the monad β . In other words, every compact Hausdorff space X can be regarded as an ultraset, taking $r: \beta X \to X$ to be the unique map which agrees with the identity on X and is continuous (where βX is regarded as the Stone-Čech compactification of X as a discrete set, and the right hand side uses the compact Hausdorff topology on X).

Theorem 9. The adjunction $\text{Set} \xrightarrow{F} \text{Top}_{ch}$ is monadic. In other words, it induces an equivalence of categories

$$\{Compact\ Hausdorff\ spaces\} \xrightarrow{\sim} \{Ultrasets\}.$$

By virtue of Theorem 9, we obtain yet another formulation of the notion of an ultraset:

Definition 10 (Ultrasets-Version 6). An *ultraset* is a compact Hausdorff space.

Remark 11. We can make the equivalence of Definitions 10 and 2 explicit, without passing through the theory of ultracategories. Note that every topological space X represents a functor

$$F_X : \text{Stone}^{\text{fr,op}} \to \text{Set},$$

given by $F_X(\beta I) = \operatorname{Hom}_{\operatorname{Top}}(\beta I, X)$. If X is compact Hausdorff, then the functor F_X carries coproducts in Stone^{fr} to products of sets, and is therefore an ultraset in the sense of Definition 2.

Proof Sketch of Theorem 9. We will explicitly describe an inverse to the functor

$$\{\text{Compact Hausdorff spaces}\} \rightarrow \{\text{Ultrasets}\}.$$

Let X be an ultraset: that is, a set equipped with a map $r: \beta X \to X$ satisfying the requirements of Proposition 5. We wish to show that X can be equipped with the structure of a compact Hausdorff space for which the map r is continuous (in which case r will be the unique continuous extension of the identity map $\mathrm{id}_X: X \to X$, by the universal property of βX). Note that r determines an equivalence relation $R \subseteq (\beta X) \times_X (\beta X)$, given by

$$((x,y) \in R) \Leftrightarrow (r(x) = r(y)).$$

Since r is surjective, we can identify X with the quotient $(\beta X)/R$. Let us endow X with the quotient topology, so that X is automatically compact and r is automatically continuous. The only nontrivial point is to verify that this topology is Hausdorff: that is, that the equivalence relation R is closed.

Consider the projection maps $\pi, \pi': R \to \beta X$, and set $Y = \beta R$. Note that π and π' extend uniquely to continuous maps $\overline{\pi}, \overline{\pi}': \beta R \to \beta X$. The pair

$$(\overline{\pi}, \overline{\pi}'): \beta R \to \beta X \times \beta X$$

is a continuous map of compact Hausdorff spaces, and therefore has closed image. Clearly, this image contains R. We will complete the proof by showing that the image is exactly R: that is, that the diagram

$$\beta R \xrightarrow{\overline{\pi}} \beta X$$

$$\downarrow^{\overline{\pi'}} \qquad \downarrow^r$$

$$\beta X \xrightarrow{r} X$$

commutes. Note that the maps $r \circ \overline{\pi}$ and $r \circ \overline{\pi}'$ are maps from βR to X in the category of algebras for the monad β . Consequently, to show that they coincide, it will suffice to show that they coincide when restricted to R (since βR is the free β -algebra generated by R). We are therefore reduced to proving the commutativity of the diagram

$$\begin{array}{ccc} R & \xrightarrow{\pi} & \beta X \\ \downarrow^{\pi'} & & \downarrow^r \\ \beta X & \xrightarrow{r} & X, \end{array}$$

which is immediate from the definition of R.