
Lecture 26X-Ultrasets

April 14, 2018

Our goal in this lecture is to unwind the definitions of the preceding lectures in a particularly simple
case.

Definition 1 (Ultrasets-Version 1). An ultraset is an ultracategory fibration π : E → Stonefr with the
property that each fiber π−1{βI} is a category with only identity morphisms: that is, it is a set, regarded
as a category.

Note that if π : E→ B is any local Grothendieck fibration whose fibers are sets, then π is automatically
a Grothendieck fibration (since every natural transformation between functors EB′ → EB is automatically
invertible). It is therefore a fibration in sets, which is classified by a functor Bop → Set, given by B 7→ EB .
In the case where B = Stonefr, such a fibration π : E → B is an ultracategory fibration if and only if the
associated functor Bop → Set preserves (possibly infinite) products. We can therefore reformulate Definition
1 as follows:

Definition 2 (Ultrasets-Version 2). An ultraset is a functor F : Stonefr,op → Set which carries coproducts
in Stonefr to products in Set (so that we have canonical isomorphisms F (βI) = F (∗)I).

We can obtain another equivalent formulation of Definition 2 using the notion of ultracategory introduced
in Lecture 25X. Giving an ultraset (in the sense of either Definition 1 or 2) is equivalent to giving an
ultracategory for which the underlying category M is a set. In this case, the definition of an ultracategory
simplifies substantially:

Definition 3 (Ultrasets-Version 3). An ultraset consists of the following data:

(1) A set M .

(2) For every set I and every ultrafilter U on I, a map of sets PU : M I →M .

This data is required to satisfy the following conditions:

(3) If U is the principal ultrafilter associated to an element i ∈ I, then PU : M I →M is given by projection
onto the ith factor.

(4) Given sets I and J , an ultrafilter U on I, and a collection {Vi}i∈I of ultrafilters on J , we have an
equality

PU oV• = PU ◦ {PVi}i∈I
of functions from MJ into M .

Suppose that M is an ultraset in the sense of Definition 3. Taking I = M and idM ∈ MM to be the
identity function, we see that the construction U 7→ PU(idM ) determines a function r : βM → M . The
structure of M as an ultraset is completely encoded by this function:
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Lemma 4. Let M be an ultraset (in the sense of Definition 3). Then, for any set I, any ultrafilter U on I,
and any f ∈M I (which we view as a function from I to M), we have

PU(f) = u(f∗ U).

Here f∗ U denotes the ultrafilter on M given by

(M0 ∈ f∗ U)⇔ (f−1M0 ∈ U).

Proof. Set J = M . For each i ∈ I, let Vi be the principal ultrafilter on J associated to the element f(i) ∈M .
Axiom (3) then gives PVi(idM ) = idM (fi) = f(i). Note that the composite ultrafilter U oV• can be identified
with f∗ U. Applying axiom (4), we obtain

u(f∗ U) = PU oV•(idM ) = PU{PVi{idM}}i∈I = PU(f).

Proposition 5. Let M be an ultraset (in the sense of Definition 3). Then the map r : βM → M defined
above has the following properties:

(a) The restriction of r to M is the identity map idM (where we identify M with a subset of βM).

(b) Let ρ : β(βM)→ βM be the unique continuous map whose restriction to βM is the identity (where we
identify βM with an open subset of β(βM)). Then we have a commutative diagram

β(βM)
ρ //

β(u)

��

βM

u

��
βM

u // M.

Proof. Assertion (a) is an immediate consequence of axiom (3) of Definition 3. To prove (b) let us apply
axiom (4) in the case where I = βM , J = M , the construction i 7→ Vi is the identity (that is, it associates
to each element of βM the corresponding ultrafilter on M). Let U be an ultrafilter on βM , which we can
identify with a point of β(βM). Then axiom (4) gives an equality

PU oV•(idM ) = PU{PV(idM )}V∈βM = PU(u)

Unwinding the definitions, we see that U oV• coincides with ρ(U) as an ultrafilter on M , so the left hand side
is given by r(ρ(U)). On the other hand, Lemma 4 allows us to rewrite the right hand side as r(r∗ U).

Proposition ?? has a converse:

Proposition 6. Let M be a set equipped with a map r : βM → M satisfying conditions (a) and (b) of
Proposition 5. Then M inherits the structure of an ultraset, given by

PU(f) = u(f∗ U)

for f ∈M I and U ∈ βI.

Proof. We must show that PU satisfies conditions (3) and (4) of Definition 3. Suppose first that U is a
principal ultrafilter on a set I and that f ∈ M I . Then f∗ U is the principal ultrafilter on f(i) ∈ M , so that
PU(f) = u(f∗(U)) = u(f(i)) = f(i) by virtue of (a).

Now suppose we are given sets I and J and a collection of ultrafilters {Vi}i∈I on the set J , so that the
construction i 7→ Vi determines a map of sets g : I → βJ . We wish to show that we have an equality

PU oV•(f) = PU{PVi(f)}i∈I .

2



for each ultrafilter U on the set I. Unwinding the definitions, we see that the left hand side is given (as a
function of U) by the composition

βI
βg−→ ββJ

ββf−−→ ββM
ρ−→ βM

u−→M

while the right hand side is given by

βI
βg−→ ββJ

βf∗−−→ ββM
β(u)−−−→ βM

u−→M ;

these maps coincide by virtue of property (b).

We leave it to the reader to check that for a fixed set M , these constructions establish mutually inverse
bijections

{Functions PU : M I →M satisfying Definition 3} ' {Functions r : βM →M satisfying (a) and (b)}.

This leads to another formulation:

Definition 7 (Ultrasets-Version 4). An ultraset is a set M equipped with a map r : βM → M satisfying
conditions (a) and (b) of Proposition 5.

Let us give another interpretation of this definition. Let Topch denote the category of compact Hausdorff
topological spaces and continuous maps. This category is equipped with a forgetful functor G : Topch → Set.
The forgetful functor G has a left adjoint F , which associates to each set I its Stone-Čech compactification
βI, regarded as a topological space. The composition β = G◦F is the functor which associates to each set I
the Stone-Čech compactification βI, regarded merely as a set. This realization endows β with the structure
of a monad: that is, as an associative algebra in the category Fun(Set, Set) of endofunctors of Set. Explicitly,
this algebra structure is encoded by a unit map

u : idSet → β ρ : β ◦ β → β.

Unwinding the definitions, we see that u associates to each set M the canonical inclusion M ↪→ βM , while
ρ associates to each set M the map ββM → βM appearing in Proposition 5. We can therefore restate
Definition 7 in the language of monads:

Definition 8 (Ultrasets-Version 5). An ultraset is an algebra over the monad β : Set→ Set.

By general nonsense, the forgetful functor G : Topch → Set factors through the category of algebras for
the monad β. In other words, every compact Hausdorff space X can be regarded as an ultraset, taking
r : βX → X to be the unique map which agrees with the identity on X and is continuous (where βX is
regarded as the Stone-Čech compactifiction of X as a discrete set, and the right hand side uses the compact
Hausdorff topology on X).

Theorem 9. The adjunction Set
F //Topch
G
oo is monadic. In other words, it induces an equivalence of

categories
{Compact Hausdorff spaces} ∼−→ {Ultrasets}.

By virtue of Theorem 9, we obtain yet another formulation of the notion of an ultraset:

Definition 10 (Ultrasets-Version 6). An ultraset is a compact Hausdorff space.

Remark 11. We can make the equivalence of Definitions 10 and 2 explicit, without passing through the
theory of ultracategories. Note that every topological space X represents a functor

FX : Stonefr,op → Set,

given by FX(βI) = HomTop(βI,X). If X is compact Hausdorff, then the functor FX carries coproducts in

Stonefr to products of sets, and is therefore an ultraset in the sense of Definition 2.
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Proof Sketch of Theorem 9. We will explicitly describe an inverse to the functor

{Compact Hausdorff spaces} → {Ultrasets}.

Let X be an ultraset: that is, a set equipped with a map r : βX → X satisfying the requirements of
Proposition 5. We wish to show that X can be equipped with the structure of a compact Hausdorff space
for which the map r is continuous (in which case r will be the unique continuous extension of the identity
map idX : X → X, by the universal property of βX). Note that r determines an equivalence relation
R ⊆ (βX)×X (βX), given by

((x, y) ∈ R)⇔ (r(x) = r(y)).

Since r is surjective, we can identify X with the quotient (βX)/R. Let us endow X with the quotient
topology, so that X is automatically compact and r is automatically continuous. The only nontrivial point
is to verify that this topology is Hausdorff: that is, that the equivalence relation R is closed.

Consider the projection maps π, π′ : R → βX, and set Y = βR. Note that π and π′ extend uniquely to
continuous maps π, π′ : βR→ βX. The pair

(π, π′) : βR→ βX × βX

is a continuous map of compact Hausdorff spaces, and therefore has closed image. Clearly, this image contains
R. We will complete the proof by showing that the image is exactly R: that is, that the diagram

βR
π //

π′

��

//

��

βX

r

��
βX

r // X

commutes. Note that the maps r ◦ π and r ◦ π′ are maps from βR to X in the category of algebras for the
monad β. Consequently, to show that they coincide, it will suffice to show that they coincide when restricted
to R (since βR is the free β-algebra generated by R). We are therefore reduced to proving the commutativity
of the diagram

R
π //

π′

��

βX

r

��
βX

r // X,

which is immediate from the definition of R.
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