Lecture 25X-Ultracategories

April 13, 2018

We begin by recalling the following definition from Lecture 24X:

Definition 1. An ultracategory fibration is a category & together with a functor 7 : € — Stone™ with the
following properties:

(1) The functor 7 is a local Grothendieck fibration.

(2) Let I be a set and let f; : {i} < BI denote the inclusion map for each ¢ € I. Then the construction
(M € &pr) = {fiM € &y }ier

induces an equivalence of categories

85[ — H 8{1} .
el

(3) Let g: BT — BJ and f: 8J — BK be maps in Stone™, and suppose that ¢ carries I into J. Then the
natural transformation g* o f* — (f o g)* is an equivalence of functors from Mg to Egr.

In this lecture, we will describe the structure of an arbitrary ultracategory fibration 7 : &€ — Stone.

Notation 2. Let 7 : & — Stone™ be an ultracategory fibration. We let M denote the fiber product
(€ Xgtonetr {*})°P. We will refer to M as the underlying category of the ultracategory fibration .

Example 3. Let C be a small pretopos. Then the underlying category of the ultracategory fibration
Stonels — Stone™ is the category Mod(€) of models of €.

Let’s now return to the general case. Let m: & — Stone®™ be an ultracategory fibration with underlying
category M. For every set I, assumption (2) of Definition 1 supplies an equivalence of categories

v &G = (mh).
Let U be an ultrafilter on I, which we can identify with a point of SI. Then U determines a map of spaces
* — (I, which gives rise to a pullback functor Y €Y7 — SC{){)L} ~ M. We let P¥ : M! — M denote the
functor given by the composition iy o ’Yz .

Example 4. Let C be a small pretopos and let 7 : Stone%r — Stone'™ be the forgetful functor. Then, for any
set I and any ultrafilter U on I, the functor PY : Mod(€)! — Mod(€) is given by

Y({Mitier) = (T Mi)/ U

i€l

We again return to the general case. Suppose we are given a continuous map f : SI — [(J, given by a
collection of ultrafilters {U;};cs on the set J. Suppose we are given a pair of objects E € gy and E’' € Eay,
having images

1(E) = {M; € M}ier  7s(E') = {N; € M}je.



Let’s try to describe the set
Homg (E’7 E’) XHOmSmanr(ﬁfﬂJ) {f}

We then have canonical bijections

Home (B, E') X#omg, (51,50 {f} =~ Home,, (E, f"E')
Homyer (v (f*E'), 71 (E))

~ [ Homac(PY{N;} e, M);
el
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Here we are using condition (3) of Definition 1 to identify v;(f*E’) with the tuple {PYiv;(E")}ier.
By virtue of this calculation, we can attempt to reconstruct the category € (up to equivalence) from the
data of the category M and the functors PY : M? — M. Let’s attempt to define a category & as follows:

e The objects of € are pairs (I, {M;}ics), where I is a set and {M;};c; is a family of objects of M indexed
by I.

e Given a pair of objects (I,{M;}icr) and (J,{N;});jes, we set

Homg (I, {Mi}icr), (J{AN;})jes) = [I [IHomae(PY{N;};cs, M)
FBI—BT icl

where the coproduct is taken over all continuous maps f : fI — (J, which we identify with families
of ultrafilters {U;};cs on the set J.

By virtue of the above discussion, choosing an inverse 71_1 to each of the functors ~; gives a construction
F
(I, {M:}) = ~v; {M;}
which carries objects of € to objects of €, and we have canonical bijections
/

Homg(E, E') = Homg (F(E), F(E))

for every pair of objects E, E € €. Tt follows that there is a unique composition law on &€ for which F is a
functor (and therefore an equivalence of categories). We now give an explicit description of this structure in
terms of the functors P% : M? — M.

Remark 5 (Identity Morphisms). Let I be a set containing an element 4, and let U; denote the principal
ultrafilter determined by the element i. By construction, the diagram of categories

P,
eh —— M
Y e/
MI

commutes up to canoncial isomorphism, where ev; is the functor given by evaluation on the ith coordinate.
It follows that there is a canonical isomorphism

€1,i: pli ~ ev;

of functors from M’ to M. B
For any collection of objects {M;};cr, the identity morphism from (I, {M;}icr) to itself in € is encoded
by the family of maps

{eri({M;}jer Pui{Mj}jeI ~ Mi}ier.



Remark 6 (Composition). Let f : 3J — BK be a morphism in Stonee, given by a collection {V;};cs of
ultrafilters on K. Suppose we are given an ultrafilter U on J, which we can identify with a map g : x — 8J.
Let UV, denote the ultrafilter on K given by the composition f o g, so that

(KQEuzv,)@({jEJlK()GVj}EU)

Then we have a natural transformation of functors g* o f* — (f o g)* from Egx to €.. Passing to opposite
categories and composing with the equivalence vg, we obtain a map

PUYVe My bex — PYPY {Mybier ties
depending functorially on {Mj}rex € M™; we will write this as a natural transformation
v, PUYs — PUo (PVidc).

Using the natural transformations puy v, , we can describe the composition of morphisms in the category
&. Let f: BJ — BK be as above, and suppose we are given another map g : 31 — 3.J, given by a collection
of ultrafilters {U;};cr on the set J. For each i € I, let U;1V, € BK be the image of U; under the map f.
Suppose that we lift f and g to morphisms

g: (I {Mi}ier) = (J{Mj}jes)
[ (T AM Y jes) = (K AM bre )
in the category €. Then f is given by specifying a collection of maps
{f; : PYi{M}kex — M}}jer,
in the category M, and g is given by specifying a family of maps
{g; : PY"{Mj}jc; — Mi}ics

in the category M. Unwinding the definitions, we see that the composition f og in € is encoded by the
family of composite maps

. iVe . . ?.7 ; 9;
PY Y M e 0 PULPYH M Y rexc bies 2 PY{M!}ies 25 M.

It follows from the above discussion that all of the data needed to construct the category & is encoded by
the functors PY : M? — M, the natural transformations e 1,i (which encode identity morphisms in &), and
the natural transformations pqv,. This motivates the following definition, which is a variant of a notion
introduced by Makkai:

Definition 7 (Ultracategories). An wultracategory consists of the following data:
(1) A category M.
(2) For every set I and every ultrafilter U on I, a functor P% : M! — M.

(3) For every set I and every element i € I, an isomorphism of functors ey ; : PUWi ~ ev;, where U; denotes
the principal ultrafilter associated to ¢ (and ev; : ML= Mis given by projection onto the ith factor).

(4) For every pair of sets I and J, every ultrafilter U on I, and every family {V;};c; of ultrafilters on J, a
natural transformation
JTETR PUtVe _ plo {Pvi}iel

of functors from M’ to M.



These maps are required to satisfy the following axioms:

(A) In the situation of (4), suppose that U is the principal ultrafilter associated to some element ig € I, so
that UV, =V,;,. Then, for any collection of objects {M;};cs, we have a commutative diagram

HU,ve

PUYVe M} iey PYPYiI{M;}jertier
PYio{M;}jes

(B) In the situation of (4), suppose that I = J and that each V; is the principal ultrafilter associated to i,
so that UV, = U. Then, for any collection of objects {M,},cs, we have a commutative diagram

HU,ve

PUYVe M} icy PYPYi{M;}jertier
PY{M,;}icr.

(C) Suppose we are given a diagram * ER BI % BJ LN BK in Stone™, corresponding to an ultrafilter U
on I, a collection of ultrafilters {V;};cr on J and a collection of ultrafilters {W;};c; on K. Then, for
every collection { My }rek, we have a commutative diagram

MU, Ve Il We

PUVQWerpp 1, PUYPYWe My brek Yier

i#uzv.,w. \Lﬂvi,w.

Hu,ve

PUYVef PWilMibkek b jes ——= PY{PYVi{PWi{M ke }jes bicr-

Remark 8. Roughly speaking, we can think of an ultracategory as a category M equipped with a notion
of “how to take ultraproducts of objects in M”: that is, given a collection of objects {M;};c; and an
ultrafilter U on the index category I, we can form a new object PY{M;};c; € M which we think of as the
ultraproduct of the objects M; with respect to the ultrafilter U. Datum (3) asserts that an ultraproduct
indexed by a principal ultrafilter returns one of the objects that we started with, and datum (4) encodes
natural comparison maps from ultraproducts to iterated ultraproducts (such as a “diagonal” map from any
object M to the ultrapower PUY{M};cp).

Given an ultracategory M, we can define a category & with objects and morphisms defined above, where
the identity morphisms are determined by the natural isomorphisms €;; and the composition is determined
by the morphisms p( (v,}. Conditions (A), (B), and (C) are exactly what is needed to guarantee that the
resulting composition law is unital (on both sides) and associative. Moreover, the construction

(I, {M;}icr) = BI

determines a forgetful functor 7 : & — Stone'™, which is essentially a local Grothendieck fibration. More
precisely, it defines a local Grothendieck fibration from € to the full subcategory of Stone™ spanned by spaces
which are identical to (rather than merely homeomorphic to) I, for some set I. Moreover, the functor 7
satisfies the obvious analogues of conditions (2) and (3) of Definition 1. We can summarize the situation
informally as follows:

Proposition 9. The constructions of this lecture establish an equivalence between the following data:
e Ultracategory fibrations 7 : & — Stone™ (in the sense of Definition 1).

o Ultracategories M (in the sense of Definition 7).



