Lecture 25X-Ultracategories

April 13, 2018

We begin by recalling the following definition from Lecture 24X:

Definition 1. An ultracategory fibration is a category \mathcal{E} together with a functor $\pi: \mathcal{E} \to \text{Stone}^{\text{fr}}$ with the following properties:

- (1) The functor π is a local Grothendieck fibration.
- (2) Let I be a set and let $f_i: \{i\} \hookrightarrow \beta I$ denote the inclusion map for each $i \in I$. Then the construction

$$(M \in \mathcal{E}_{\beta I}) \mapsto \{f_i^* M \in \mathcal{E}_{\{i\}}\}_{i \in I}$$

induces an equivalence of categories

$$\mathcal{E}_{eta I}
ightarrow \prod_{i \in I} \mathcal{E}_{\{i\}} \, .$$

(3) Let $g: \beta I \to \beta J$ and $f: \beta J \to \beta K$ be maps in Stone^{fr}, and suppose that g carries I into J. Then the natural transformation $g^* \circ f^* \to (f \circ g)^*$ is an equivalence of functors from $\mathcal{M}_{\beta K}$ to $\mathcal{E}_{\beta I}$.

In this lecture, we will describe the structure of an arbitrary ultracategory fibration $\pi: \mathcal{E} \to \mathrm{Stone}^{\mathrm{fr}}$.

Notation 2. Let $\pi: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}$ be an ultracategory fibration. We let \mathcal{M} denote the fiber product $(\mathcal{E} \times_{\operatorname{Stone}^{\operatorname{fr}}} \{*\})^{\operatorname{op}}$. We will refer to \mathcal{M} as the *underlying category* of the ultracategory fibration π .

Example 3. Let \mathcal{C} be a small pretopos. Then the underlying category of the ultracategory fibration $\mathrm{Stone}_{\mathcal{C}}^{\mathrm{fr}} \to \mathrm{Stone}^{\mathrm{fr}}$ is the category $\mathrm{Mod}(\mathcal{C})$ of models of \mathcal{C} .

Let's now return to the general case. Let $\pi: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}$ be an ultracategory fibration with underlying category \mathcal{M} . For every set I, assumption (2) of Definition 1 supplies an equivalence of categories

$$\gamma_I: \mathcal{E}_{\beta I}^{\mathrm{op}} \xrightarrow{\sim} (\mathcal{M}^I).$$

Let \mathcal{U} be an ultrafilter on I, which we can identify with a point of βI . Then \mathcal{U} determines a map of spaces $*\to \beta I$, which gives rise to a pullback functor $\psi_{\mathcal{U}}: \mathcal{E}^{\mathrm{op}}_{\beta I} \to \mathcal{E}^{\mathrm{op}}_{\{\mathcal{U}\}} \simeq \mathcal{M}$. We let $P^{\mathcal{U}}: \mathcal{M}^I \to \mathcal{M}$ denote the functor given by the composition $\psi_{\mathcal{U}} \circ \gamma_I^{-1}$.

Example 4. Let \mathcal{C} be a small pretopos and let $\pi: \mathrm{Stone}_{\mathcal{C}}^{\mathrm{fr}} \to \mathrm{Stone}^{\mathrm{fr}}$ be the forgetful functor. Then, for any set I and any ultrafilter \mathcal{U} on I, the functor $P^{\mathcal{U}}: \mathrm{Mod}(\mathcal{C})^I \to \mathrm{Mod}(\mathcal{C})$ is given by

$$P^{\mathcal{U}}(\{M_i\}_{i\in I}) = (\prod_{i\in I} M_i)/\mathcal{U}.$$

We again return to the general case. Suppose we are given a continuous map $f: \beta I \to \beta J$, given by a collection of ultrafilters $\{\mathcal{U}_i\}_{i\in I}$ on the set J. Suppose we are given a pair of objects $E \in \mathcal{E}_{\beta I}$ and $E' \in \mathcal{E}_{\beta J}$, having images

$$\gamma_I(E) = \{M_i \in \mathcal{M}\}_{i \in I} \qquad \gamma_J(E') = \{N_j \in \mathcal{M}\}_{j \in J}.$$

Let's try to describe the set

$$\operatorname{Hom}_{\mathcal{E}}(E, E') \times_{\operatorname{Hom}_{\operatorname{Stanefr}}(\beta I, \beta J)} \{f\}.$$

We then have canonical bijections

$$\begin{split} \operatorname{Hom}_{\mathcal{E}}(E,E') \times_{\operatorname{Hom}_{\operatorname{Stonefr}}(\beta I,\beta J)} \{f\} & \simeq & \operatorname{Hom}_{\mathcal{E}_{\beta I}}(E,f^*E') \\ & \simeq & \operatorname{Hom}_{\mathcal{M}^I}(\gamma_I(f^*E'),\gamma_I(E)) \\ & \simeq & \prod_{i \in I} \operatorname{Hom}_{\mathcal{M}}(P^{\mathfrak{U}_i}\{N_j\}_{j \in J},M_i); \end{split}$$

Here we are using condition (3) of Definition 1 to identify $\gamma_I(f^*E')$ with the tuple $\{P^{\mathcal{U}_i}\gamma_J(E')\}_{i\in I}$.

By virtue of this calculation, we can attempt to reconstruct the category \mathcal{E} (up to equivalence) from the data of the category \mathcal{M} and the functors $P^{\mathcal{U}}: \mathcal{M}^I \to \mathcal{M}$. Let's attempt to define a category $\overline{\mathcal{E}}$ as follows:

- The objects of $\overline{\mathcal{E}}$ are pairs $(I, \{M_i\}_{i \in I})$, where I is a set and $\{M_i\}_{i \in I}$ is a family of objects of \mathcal{M} indexed by I.
- Given a pair of objects $(I, \{M_i\}_{i \in I})$ and $(J, \{N_j\})_{j \in J}$, we set

$$\operatorname{Hom}_{\overline{\mathcal{E}}}((I,\{M_i\}_{i\in I}),(J,\{N_j\})_{j\in J}) = \coprod_{f:\beta I \to \beta J} \prod_{i\in I} \operatorname{Hom}_{\mathfrak{M}}(P^{\mathfrak{U}_i}\{N_j\}_{j\in J},M_i)$$

where the coproduct is taken over all continuous maps $f: \beta I \to \beta J$, which we identify with families of ultrafilters $\{\mathcal{U}_i\}_{i\in I}$ on the set J.

By virtue of the above discussion, choosing an inverse γ_I^{-1} to each of the functors γ_I gives a construction F

$$(I, \{M_i\}) \mapsto \gamma_I^{-1}\{M_i\}$$

which carries objects of $\overline{\mathcal{E}}$ to objects of \mathcal{E} , and we have canonical bijections

$$\operatorname{Hom}_{\overline{\mathcal{E}}}(\overline{E}, \overline{E}') = \operatorname{Hom}_{\mathcal{E}}(F(\overline{E}), F(\overline{E}'))$$

for every pair of objects $\overline{E}, \overline{E}' \in \overline{\mathcal{E}}$. It follows that there is a unique composition law on $\overline{\mathcal{E}}$ for which F is a functor (and therefore an equivalence of categories). We now give an explicit description of this structure in terms of the functors $P^{\mathfrak{U}}: \mathcal{M}^I \to \mathcal{M}$.

Remark 5 (Identity Morphisms). Let I be a set containing an element i, and let \mathcal{U}_i denote the principal ultrafilter determined by the element i. By construction, the diagram of categories

commutes up to canonical isomorphism, where ev_i is the functor given by evaluation on the ith coordinate. It follows that there is a canonical isomorphism

$$\epsilon_{I,i}: P^{\mathcal{U}_i} \simeq \operatorname{ev}_i$$

of functors from \mathcal{M}^I to \mathcal{M} .

For any collection of objects $\{M_i\}_{i\in I}$, the identity morphism from $(I, \{M_i\}_{i\in I})$ to itself in $\overline{\mathcal{E}}$ is encoded by the family of maps

$$\{\epsilon_{I,i}(\{M_j\}_{j\in I}: P^{\mathcal{U}_i}\{M_j\}_{j\in I}\simeq M_i\}_{i\in I}.$$

Remark 6 (Composition). Let $f: \beta J \to \beta K$ be a morphism in Stone_C, given by a collection $\{\mathcal{V}_j\}_{j\in J}$ of ultrafilters on K. Suppose we are given an ultrafilter \mathcal{U} on J, which we can identify with a map $g: * \to \beta J$. Let $\mathcal{U} \wr \mathcal{V}_{\bullet}$ denote the ultrafilter on K given by the composition $f \circ g$, so that

$$(K_0 \in \mathcal{U} \wr \mathcal{V}_{\bullet}) \Leftrightarrow (\{j \in J : K_0 \in \mathcal{V}_i\} \in \mathcal{U})$$

Then we have a natural transformation of functors $g^* \circ f^* \to (f \circ g)^*$ from $\mathcal{E}_{\beta K}$ to \mathcal{E}_* . Passing to opposite categories and composing with the equivalence γ_K , we obtain a map

$$P^{\mathfrak{U} \wr \mathfrak{V}_{\bullet}} \{ M_k \}_{k \in K} \to P^{\mathfrak{U}} \{ P^{\mathfrak{V}_j} \{ M_k \}_{k \in K} \}_{j \in J}$$

depending functorially on $\{M_k\}_{k\in K}\in \mathcal{M}^K$; we will write this as a natural transformation

$$\mu_{\mathcal{U},\mathcal{V}_{\bullet}}: P^{\mathcal{U}\wr\mathcal{V}_{\bullet}} \to P^{\mathcal{U}}\circ \{P^{\mathcal{V}_{j}}\}_{j\in J}.$$

Using the natural transformations $\mu_{\mathcal{U},\mathcal{V}_{\bullet}}$, we can describe the composition of morphisms in the category $\overline{\mathcal{E}}$. Let $f:\beta J\to\beta K$ be as above, and suppose we are given another map $g:\beta I\to\beta J$, given by a collection of ultrafilters $\{\mathcal{U}_i\}_{i\in I}$ on the set J. For each $i\in I$, let $\mathcal{U}_i\wr\mathcal{V}_{\bullet}\in\beta K$ be the image of \mathcal{U}_i under the map f. Suppose that we lift f and g to morphisms

$$\overline{g}: (I, \{M_i\}_{i \in I}) \to (J, \{M'_i\}_{j \in J})$$

$$\overline{f}: (J, \{M'_i\}_{i \in J}) \to (K, \{M''_k\}_{k \in K})$$

in the category $\overline{\mathcal{E}}$. Then \overline{f} is given by specifying a collection of maps

$$\{\overline{f}_i: P^{\mathcal{V}_j}\{M_k''\}_{k\in K} \to M_i'\}_{i\in J},$$

in the category \mathcal{M} , and \overline{g} is given by specifying a family of maps

$$\{\overline{g}_i: P^{\mathcal{U}_i}\{M_i'\}_{i\in I}\to M_i\}_{i\in I}$$

in the category \mathcal{M} . Unwinding the definitions, we see that the composition $\overline{f} \circ \overline{g}$ in \mathcal{E} is encoded by the family of composite maps

$$P^{\mathfrak{U}_{i} \wr \mathfrak{V}_{\bullet}} \{ M_{k}^{\prime \prime} \}_{k \in K} \xrightarrow{\mu_{\mathfrak{U}_{i}}, \mathfrak{V}_{\bullet}} P^{\mathfrak{U}_{i}} \{ P^{\mathfrak{V}_{j}} \{ M_{k}^{\prime \prime} \}_{k \in K} \}_{j \in J} \xrightarrow{\overline{f}_{j}} P^{\mathfrak{U}_{i}} \{ M_{j}^{\prime \prime} \}_{j \in J} \xrightarrow{\overline{g}_{i}} M_{i}.$$

It follows from the above discussion that all of the data needed to construct the category $\overline{\mathcal{E}}$ is encoded by the functors $P^{\mathfrak{U}}: \mathcal{M}^I \to \mathcal{M}$, the natural transformations $\epsilon_{I,i}$ (which encode identity morphisms in $\overline{\mathcal{E}}$), and the natural transformations $\mu_{\mathcal{U},\mathcal{V}_{\bullet}}$. This motivates the following definition, which is a variant of a notion introduced by Makkai:

Definition 7 (Ultracategories). An ultracategory consists of the following data:

- (1) A category \mathcal{M} .
- (2) For every set I and every ultrafilter \mathcal{U} on I, a functor $P^{\mathcal{U}}: \mathcal{M}^I \to \mathcal{M}$.
- (3) For every set I and every element $i \in I$, an isomorphism of functors $\epsilon_{I,i} : P^{\mathcal{U}_i} \simeq \text{ev}_i$, where \mathcal{U}_i denotes the principal ultrafilter associated to i (and $\text{ev}_i : \mathcal{M}^I \to \mathcal{M}$ is given by projection onto the ith factor).
- (4) For every pair of sets I and J, every ultrafilter \mathcal{U} on I, and every family $\{\mathcal{V}_i\}_{i\in I}$ of ultrafilters on J, a natural transformation

$$\mu_{\mathcal{U}, \mathcal{V}_{\bullet}}: P^{\mathcal{U} \wr \mathcal{V}_{\bullet}} \to P^{\mathcal{U}} \circ \{P^{\mathcal{V}_i}\}_{i \in I}$$

of functors from \mathcal{M}^J to \mathcal{M} .

These maps are required to satisfy the following axioms:

(A) In the situation of (4), suppose that \mathcal{U} is the principal ultrafilter associated to some element $i_0 \in I$, so that $\mathcal{U} \wr \mathcal{V}_{\bullet} = \mathcal{V}_{i_0}$. Then, for any collection of objects $\{M_j\}_{j \in J}$, we have a commutative diagram

$$P^{\mathfrak{U}\wr\mathcal{V}_{\bullet}}\{M_{j}\}_{j\in J} \xrightarrow{\mu_{\mathfrak{U},\mathcal{V}_{\bullet}}} P^{\mathfrak{U}}\{P^{\mathcal{V}_{j}}\{M_{j}\}_{j\in J}\}_{i\in I}$$

$$P^{\mathcal{V}_{i_{0}}}\{M_{j}\}_{j\in J}$$

(B) In the situation of (4), suppose that I = J and that each \mathcal{V}_i is the principal ultrafilter associated to i, so that $\mathcal{U} \wr \mathcal{V}_{\bullet} = \mathcal{U}$. Then, for any collection of objects $\{M_j\}_{j \in J}$, we have a commutative diagram

$$P^{\mathfrak{U}\wr\mathcal{V}_{\bullet}}\{M_{j}\}_{j\in J} \xrightarrow{\mu_{\mathfrak{U},\mathcal{V}_{\bullet}}} P^{\mathfrak{U}}\{P^{\mathcal{V}_{j}}\{M_{j}\}_{j\in J}\}_{i\in I}$$

$$= \prod_{\epsilon_{J,\bullet}} \Gamma_{\epsilon_{J,\bullet}}$$

(C) Suppose we are given a diagram $* \xrightarrow{f} \beta I \xrightarrow{g} \beta J \xrightarrow{h} \beta K$ in Stone^{fr}, corresponding to an ultrafilter \mathcal{U} on I, a collection of ultrafilters $\{\mathcal{V}_i\}_{i\in I}$ on J and a collection of ultrafilters $\{\mathcal{W}_j\}_{j\in J}$ on K. Then, for every collection $\{M_k\}_{k\in K}$, we have a commutative diagram

$$P^{\mathfrak{U} \wr \mathcal{V}_{\bullet} \wr \mathcal{W}_{\bullet}} \{M_{k}\}_{k \in K} \xrightarrow{\mu_{\mathfrak{U}, \mathcal{V}_{\bullet} \wr \mathcal{W}_{\bullet}}} P^{\mathfrak{U}} \{P^{\mathcal{V}_{i} \wr \mathcal{W}_{\bullet}} \{M_{k}\}_{k \in K}\}_{i \in I}$$

$$\downarrow^{\mu_{\mathfrak{U} \wr \mathcal{V}_{\bullet}, \mathcal{W}_{\bullet}}} \qquad \qquad \downarrow^{\mu_{\mathcal{V}_{i}, \mathcal{W}_{\bullet}}}$$

$$P^{\mathfrak{U} \wr \mathcal{V}_{\bullet}} \{P^{\mathcal{W}_{j}} \{M_{k}\}_{k \in K}\}_{j \in J} \xrightarrow{\mu_{\mathfrak{U}, \mathcal{V}_{\bullet}}} P^{\mathfrak{U}} \{P^{\mathcal{V}_{i}} \{P^{\mathcal{W}_{j}} \{M_{k}\}_{k \in K}\}_{j \in J}\}_{i \in I}.$$

Remark 8. Roughly speaking, we can think of an ultracategory as a category \mathcal{M} equipped with a notion of "how to take ultraproducts of objects in \mathcal{M} ": that is, given a collection of objects $\{M_i\}_{i\in I}$ and an ultrafilter \mathcal{U} on the index category I, we can form a new object $P^{\mathcal{U}}\{M_i\}_{i\in I}\in\mathcal{M}$ which we think of as the ultraproduct of the objects M_i with respect to the ultrafilter \mathcal{U} . Datum (3) asserts that an ultraproduct indexed by a *principal* ultrafilter returns one of the objects that we started with, and datum (4) encodes natural comparison maps from ultraproducts to iterated ultraproducts (such as a "diagonal" map from any object M to the ultrapower $P^{\mathcal{U}}\{M\}_{i\in I}$).

Given an ultracategory \mathcal{M} , we can define a category $\overline{\mathcal{E}}$ with objects and morphisms defined above, where the identity morphisms are determined by the natural isomorphisms $\epsilon_{I,i}$ and the composition is determined by the morphisms $\mu_{\mathcal{U},\{\mathcal{V}_i\}}$. Conditions (A), (B), and (C) are exactly what is needed to guarantee that the resulting composition law is unital (on both sides) and associative. Moreover, the construction

$$(I, \{M_i\}_{i \in I}) \mapsto \beta I$$

determines a forgetful functor $\pi: \overline{\mathcal{E}} \to \operatorname{Stone}^{\operatorname{fr}}$, which is essentially a local Grothendieck fibration. More precisely, it defines a local Grothendieck fibration from $\overline{\mathcal{E}}$ to the full subcategory of Stone^{fr} spanned by spaces which are identical to (rather than merely homeomorphic to) βI , for some set I. Moreover, the functor $\overline{\pi}$ satisfies the obvious analogues of conditions (2) and (3) of Definition 1. We can summarize the situation informally as follows:

Proposition 9. The constructions of this lecture establish an equivalence between the following data:

- Ultracategory fibrations $\pi: \mathcal{E} \to \operatorname{Stone}^{\operatorname{fr}}$ (in the sense of Definition 1).
- Ultracategories M (in the sense of Definition 7).