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April 11, 2018

Let € be a small pretopos, which we regard as fixed throughout this lecture. Recall that an object of
Stoneg is free if it can be written as a coproduct [[,.;({i}, M;), where {M;};cs is a collection of models of
C indexed by a set I. Let Stome‘ér denote the full subcategory of Stonee spanned by the free objects. By
definition, the category Stoneg contains the category of models Mod(€)°P as a full subcategory, and every
object of Stonef@r can be written as a coproduct of objects of Mod(€)°P. Our goal in this lecture is to address
the following:

Question 1. What is the structure of the category Stonefé? To what extent can it be reconstructed from
the category Mod(€) of models of C?

Let us begin by treating the case where € = Setg, is the category of finite sets. Then Stonee can be
identified with the category Stone of Stone spaces, and Stonef@r can be identified with the category Stone'
of free Stone spaces: that is, Stone spaces which have the form BI, for some set I. This category can be
described explicitly as follows:

e The objects of Stone'™ are Stone spaces of the form (I, where I is a set.

e Morphisms in Stone™ are given by continuous maps of Stone spaces I — BJ. Using the universal
property of SI, we see that a morphism from S1 to 8J is just given by a map of sets I — [J, or
equivalently a collection {U;};cr of ultrafilters on J which parametrized by the set I.

Remark 2. The construction I +— SBI determines a faithful and essentially surjective functor from the
category Set to the category Stone®™. For every pair of sets I and J, we can identify Homget (I, J) with the
subset of Homg oot (81, 5J) >~ Homgey (I, 5J) consisting of those maps which carry I into J. In other words,
it corresponds to the subset of Homg,,, . (81, 8J) corresponding to those collections of ultrafilters {U; }icr
where each U; is principal.

Exercise 3. Let I, J, and K be sets, and suppose we are given morphisms
f g
Bl = BJ = BK,

so that f determines a collection {U;};er of ultrafilters on J, and g determiens a collection {V,},c; of
ultrafilters on K. Show that the composition g o f corresponds to the collection of ultrafilters {W,};cs on
K, where

(Ko eW,) & ({jeJ:KyeV;}elly).

Let’s now return to the case of a general pretopos C. Note that we have a forgetful functor
7 : Stonell — Stone™ 7(X,0x) = X.

We now articulate a special feature of the functor .



Definition 4. Let 7 : € — B be a functor between categories. For each object B € B, we let g denote the
fiber product & x5 {B}.

Let f : B/ — E be a morphism in € having image f : B’ — B in the category B. We will say that f is
locally w-Cartesian if the following condition is satisfied: for every object E” € &g/ with composition with
f induces a bijection

HOIngB, (E”, El) — Homg (E”, E) XHom gy (B’,B) {f}

We say that 7 is a local Grothendieck fibration if, for every object E € & and every morphism f : B’ —
7(E) in B, there exists a locally m-Cartesian morphism f : B/ — E with 7(f) = f. In this case, it follows
from Yoneda’s lemma that the object E’ is well-defined up to canonical isomorphism as an object of the
category €p/. Moreover, the construction F — E’ determines a functor f* : &g — Ep.

Remark 5. Let 7 : € — B be a local Grothendieck fibration of categories, and suppose we are given
morphisms
B4 Llp
in the category B. For each object E € g, we can lift f to a locally m-Cartesian morphism f : f*E — E,
and we can lift g to a locally m-Cartesian morphism g : ¢* f*E — f*E. The composition (fog) : g*f*E — E
induces a comparison map pg : g*f*E — (f o g)*E. This construction depends functorially on F, and
therefore determines a natural transformation of functors p : g* o f* — (f o g)*.
The following conditions on 7 are equivalent:

e The collection of locally w-Cartesian morphisms of € is closed under composition.

e For every pair of morphisms B” % B’ L Bin B, the comparison map ¢g* o f* — (f o g)* is an
isomorphism.

If these conditions are satisfied, we say that 7 is a Grothendieck fibration.
Proposition 6. The forgetful functor m : Stonegr — Stone™™ is a local Grothendieck fibration.

Proof. Suppose we are given an object (X,0x) € Stoneg and a morphism f : Y — X in Stone'; we wish to
lift f to a locally m-Cartesian morphism

f : (KOy) — (X,Ox)

in Stoneg. Write Y = S1 for some set I, so that f determines a map from I to X (which we will also denote
by f). We take (Y, Oy) to be the coproduct [],.;({i}, Ox ¢¢;)). The canonical maps ({i}, Ox f)) = (X, 0x)
then amalgamate to a map f : (Y,0y) — (X,0x). We claim that f is locally m-Cartesian. To prove this,
we must show that for any other object (Y, 0%,) € Stoneg7 the canonical map

0 : Homggopet: (Y, 03), (Y, 0v)) XHomsyone(v;y) {idy } = Homggopetr (Y, 03), (X, 0x)) XHomgyone (v,X) {/}

e

is bijective. Since (Y, 0y ) is free, we can write it as a coproduct [],.;({i}, M;) for some collection of models
{M;};cr. We can then factor 8 as a product of maps

0; : Homygoqe) (Oy,i, M;) — Homypoace) (Ox, (i), Mi)-
Each of these maps is bijective, because f induces an isomorphism of models Ox,f() = Oy O

For each object X € Stone', let Stonef(; « denote the fiber product Stonel xg, .« {X}. It follows from
Proposition 6 that every continuous map f : X — Y in Stone™ induces a pullback functor f* : Stonefé’y —
Stoneg x-



Proposition 7. Let I be a set and set X = BI. For each i € I, let f; : {i} — X be the inclusion map.
Then the pullback functors f; induce an equivalence of categories

Stoneféx — H Stonefé{i} ~ H Mod(€)°P.
i€l i€l

Proof. Concretely, this functor is given by
((X,0x) € Stonel )+ {Ox,;}ier-
An inverse functor is given by {M;}icr — [, ({i}, Mj). O

Remark 8. In what follows, it will be convenient to use Proposition 7 to identify each of the categories
Stonegﬁl with (Mod(€)°P)!. Suppose that f : I — B.J is a continuous map of Stone spaces, corresponding
to a family of ultrafilters {U;};cs on the set J. Then the associated pullback functor

f*+ (Mod(€)°P)” ~ Stoneff 5, — Stonef} 5; ~ (Mod(€)°P)’

is given by the construction
{M;}ies = {(J] M)/ Witier,
jeJ
In other words, the local Grothendieck fibration 7 encodes the operation of “forming ultraproducts in
Mod(€)”.

Warning 9. The local Grothendieck fibration 7 : Stonely — Stone™ is usually not a Grothendieck fibration.

To see this, consider a pair of composable morphisms 81 % 8.J ER BK in the category Stone™, corresponding
to a family of ultrafilters {U;};c; on the set J and a family of ultrafilters {V;};c; on the set K. The
composition f o g then corresponds to a family of ultrafilters {W;};c; on the set K, as described in Exercise
3. We then have a natural transformation g* o f* — (f o g)* of functors from StoneféﬁK ~ (Mod(C)°P)&
to Stonef@r”@I ~ (Mod(€)°P)!. To a collection of models { M}, }rex, this natural transformation associates a
collection of maps

oo+ (T M)/ Wi — (TT(CTT 40/ v/ .

keK jeJ kek

of models of €. These maps are usually not isomorphisms. For example, suppose we are given an object
C € C for which each M (C') is nonempty. In this case, we obtain a map of sets

pi(C) : (IT Mu(@)/ Wi = (TT((TT Mu(©))/V5))/ Wi -

keK jeJ keK

whose domain can be identified with a quotient of the product [], ., Mx(C), and whose codomain can be
identified with a quotient of the product [], . x My (C)7. This map is injective but usually not surjective.

Example 10. In the situation of Warning 9, suppose that we take I and K to be one-element sets, so that
f: BJ — BK is uniquely determined and g : BI — [(J is given by specifying an ultrafilter U on the set J.
Let M be a model of €, which we can identify with an object of Stoneg’ﬁK. In this case, we can identify

(fog)*M =id* M with M, and (g* o f*)(M) with the ultrapower M7 /U. Under these identifications, the
natural transformation g* o f* — (f o g)* induces the diagonal embedding

Sar s M — M7 /U

We now describe a situation where the issue raised in Warning 9 does not arise.



Proposition 11. Let g: 81 — BJ and f : BJ — BK be maps in Stone™, and suppose that g carries I into
J (that is, g arises from a map of sets I — J). Then the natural transformation g* o f* — (f o g)* is an
equivalence of functors from StonegﬁK to Stonegﬁl.

Proof. Let us identify g and f with collections of ultrafilters {U;};cr on the set J and {V,};cs on the set K,
respectively. Our assumption is that each U; is the principal ultrafilter associated to some element g(i) € J.
In this case, the composite map fog: I — BK corresponds to the family of ultrafilters {Vy¢;}icr on K.
The desired result now follows from the observation that for any collection of sets {Si }rek, the canonical
map

(TI 50/ Vot = (TTCCTT 1)/ Vi))/ s

keK je€J keK

is bijective (this is immediate from our assumption that U; is principal). O
We now propose the following preliminary answer to Question 1:

Definition 12. An ultracategory fibration is a category & together with a functor m : & — Stone™ with the
following properties:

(1) The functor 7 is a local Grothendieck fibration.

(2) Let I be a set and let f; : {i} < BI denote the inclusion map for each i € I. Then the construction
(M € Epr) = {fiM € Ey hier

induces an equivalence of categories

85[ — H 8{1} .

i€l

(3) Let g: BI — pJ and f : 8J — BK be maps in Stone™™, and suppose that g carries I into J. Then the
natural transformation g* o f* — (f o g)* is an equivalence of functors from Mgk to Eg;.

Example 13. Let C be a small pretopos. Then the forgetful functor Stonef@r — Stone'™ is an ultracategory
fibration.



