
Lecture 22X-Embedding into an Ultrapower

April 6, 2018

Let C be a small pretopos, which we regard as fixed through this lecture. We let Profr(C) denote the
full subcategory of Pro(C) spanned by the free objects (that is, those which can be written as coproducts of
models), and we define StonefrC ⊆ StoneC similarly, so that we have an equivalence Profr(C) ' StonefrC . We
have fully faithful embeddings

C ↪→ Shv(C) ↪→ Shv(Pro(C)) ' Shv(Profr(C)) ' Shv(StonefrC) ⊆ Fun(Stonefr,opC , Set).

We have seen that every functor F : Stonefr,opC → Set which belongs to the essential image of the composite
embedding must satisfy the following pair of conditions:

(a′) For every collection of models {Mi}i∈I of C, the canonical map

F (
∐
i∈I

({i},Mi))→
∏
i∈I

F ({i},Mi)

is a bijection.

(b′) For every object (X,OX) ∈ StonefrC and every point x ∈ X, the canonical map lim−→x∈U F (U,OX |U )→
F ({x},OX,x) is a bijection. Here U ranges over all clopen neighborhoods of x in X.

Remark 1. Suppose that F : Stonefr,opC → Set satisfies conditions (a′) and (b′). Let {Mi}i∈I be a collection
of models of M , and set (X,OX) =

∐
i∈I({i},Mi) in StoneC. Suppose that x is a point of X, corresponding to

an ultrafilter U on the set I. Then every clopen neighborhood of x in X has the form UJ = {U′ ∈ X : J ∈ U′},
where J belongs to the ultrafilter U. We then compute

F ((
∏
i∈I

Mi)/U) ' F ({x},OX,x)

' lim−→
x∈UJ

F (UJ ,OX |UJ )

' lim−→
J∈U

F (
∐
i∈J

({i},Mi))

' lim−→
J∈U

∏
i∈J

F ({i},Mi)

' (
∏
i∈I

F (Mi))/U .

In other words, the functor F |Mod(C) “commutes with ultraproducts”. We will return to this observation
later.

Remark 2. Since every object of StonefrC can be written as a coproduct of models, condition (a′) is equivalent
to the following a priori stronger condition:
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(a′′) The functor F carries coproducts in StonefrC to products in Set.

Over the next few lectures, we will prove the converse: any functor F : Stonefr,opC → Set satisfying (a′)
and (b′) arises from an object of C. In this lecture, we will carry out the first step by proving the following:

Theorem 3. Let F : Stonefr,opC → Set be a functor satisfying (a′) and (b′). Then F also satisfies the
following:

(d) For every elementary morphism f : M → N in Mod(C), we have an equalizer diagram

F (M)→ F (N) ⇒
∏

F (P )

where the product is taken over all commutative diagrams M
f−→ N ⇒ P .

Corollary 4. Let F : Stonefr,opC → Set be a functor satisfying (a′) and (b′). Then F is a sheaf (with respect

to the topology on StonefrC generated by the finite coverings in StoneC).

Proof. This follows by exactly the same argument we used in Lecture 19X, replacing StoneC by the subcat-
egory StonefrC .

We begin with some preliminaries. Suppose we are given a collection of models {Mi}i∈I of C, indexed by
a set I. In Lecture 20X, we defined the ultraproduct (

∏
i∈IMi)/U associated to an ultrafilter U on I: it is

the functor from C to Set given by the construction C 7→ (
∏
i∈IMi(C))/U. In the special case where each

Mi is equal to some fixed model M , we denote this ultraproduct by M I/U and refer to it as the ultrapower
of M with respect to the ultrafilter U. Note that the diagonal embedding M(C) 7→M(C)I induces a map

M(C)→M(C)I → lim−→
J∈U

M(C)J = (M I/U)(C).

This map depends functorially on C, and can therefore be regarded as a morphism of models δM : M →
M I/U. We will deduce Theorem 3 from the following:

Theorem 5. Let f : M → N be an elementary map between models of C. Then there exists a set I, an
ultrafilter U on I, and a map of models g : N →M I/U for which the composite map

M
f−→ N

g−→M I/U

coincides with the diagonal embedding δM .

Exercise 6. Let M be a model of C, I a set, and U an ultrafilter on I. Show that the map of models
δM : M →M I/U is elementary.

Proof of Theorem 3 from Theorem 5. Suppose that f : M → N is an elementary map between models of C,
and that we are given a point η ∈ F (N) which belongs to the equalizer

Eq(F (N) ⇒
∏

M→N⇒P

F (P )).

We wish to show that η can be lifted uniquely to an element of F (M).
Choose g : N → M I/U as in Theorem 5, and let η denote the image of η in F (M I/U). Since F

commutes with ultraproducts (Remark 1), we can identify η with an element of F (M)I/U. Choose a
representative {ηi ∈ F (M)}i∈I for η. We have a commutative diagram of models

M
δM //

δM
��

M I/U

(δM )I/U

��
M I/U

δMI/U// (M I/U)I/U .
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Consequently, our hypothesis on η guarantees that the maps

δIM/U, δMI/U : M I/U→ (M I/U)I/U

carry η to the same element of

F ((M I/U)I/U) ' (F (M)I/U)I/U .

Unwinding the definitions, this tells us that the set {i ∈ I : {j ∈ I : ηi = ηj} ∈ U} belongs to U. In
particular, it is nonempty: that is, there exists some i ∈ I such that ηi = ηj for almost all j ∈ I (with
respect to the ultrafilter U). We will complete the proof by showing that η is the image of ηi ∈ F (M). To
prove this, we use the commutativity of the diagram

M
f //

δM
��

N

δN
��

M I/U
fI/U // N I/U

to observe that the maps (f I/U) ◦ g, δN : N → N I/U agree on M , and therefore carry η to the same
element of N I/U. It follows that the set {j ∈ J : F (f)(ηj) = η} belongs to U, and therefore has nonempty
intersection with the set {j ∈ J : ηj = ηi}.

Proof of Theorem 5. To avoid confusion, let us use the notation TM to denote the image of a model M ∈
Mod(C) under the inclusion Mod(C)op ↪→ Pro(C). The elementary map f : M → N can then be identified
with a map of pro-objects TN → TM , which we will denote by Tf . Our assumption that f is elementary
guarantees that Tf is an effective epimorphism in Pro(C), and can therefore be realized as the limit of an
inverse system {uα : Cα → Dα}, where each uα is an effective epimorphism in C. Without loss of generality,
we may assume that this inverse limit is indexed by the opposite of partially ordered set I which is directed
(so that every finite subset of I has an upper bound in I).

For each α ∈ I, set Pα = Cα ×Dα TM (where the fiber product is formed in Pro(C). Since M is a model,
each of the maps TM → Dα factors through uα. A choice of factorization determines a section sα : TM → Pα
of the projection map Pα → TM . To avoid confusion, let us write Fα for the image of Pα in the opposite
category Funlex(C, Set) ' Pro(C)op, so that each sα can be viewed as a natural transformation of functors
Fα →M . Note that we have TN ' lim←−α Pα in Pro(C), so that N ' lim−→α

Fα in Funlex(C, Set).

Let U0 be the collection of all subsets J ⊆ I for which there exists some α ∈ I such that {β ∈ I : β ≥
α} ⊆ J . Our assumption that I is directed guarantees that U0 is a (nontrivial) filter on I. We can therefore
choose an ultrafilter U which contains U0. For each object C ∈ C and each α ∈ I, we have a canonical
map Fα(C) →

∏
β≥α Fβ(C) given by the transition maps in the direct system {Fβ(C)}β∈I , which induces

a map from Fα(C) to the ultraproduct (
∏
β∈I Fβ(C))/U. This construction depends functorially on α, and

therefore yields a map

N(C) = lim−→
α∈I

Fα(C)→ lim−→
α∈I

(
∏
β≥α

Fβ(C))→ lim−→
J∈U

∏
β∈J

Fβ(C) = (
∏
β∈I

Fβ(C))/U .

Composing with the map

(
∏
β∈I

Fβ(C))/U
{sβ}−−−→ (

∏
β∈I

M(C))/U = (M I/U)(C),

we obtain a map N(C) → (M I/U)(C) which depends functorially on C, and can therefore be regarded as
a map of models N → M I/U. Our assumption that each sα is a section of the projection map guarantees
the the composition M → N →M I/U agrees with the diagonal embedding.
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