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Let C be an essentially small pretopos, which we regard as fixed throughout this lecture. We have fully
faithful embeddings

€ < Shv(€) < Shv(Pro(€)) ~ Shv(Pro"?(€)) ~ Shv(Stonee) C Fun(Stoney’, Set).
Moreover, in Lectures 17X and 19X we established the following:

Proposition 1. Let Z : Stoneg’ — Set be a functor. Then .F belongs to the essential image of the embedding
Shv(€) < Fun(Stoney’, 8et) if and only if it satisfies the following conditions:

(a) The functor F : Stoney” — Set preserves finite products: that is, it carries finite coproducts in Stonee
to finite products in the category of sets.

(b) For every object (X,0x) € Stonee and every point x € X, the canonical map

hﬂ f(U, Ox |U) — ﬁ({:c}, OX,I)
zeU

is bijective; here the colimit is taken over all clopen neighborhoods U C X of the point x.

(¢) The composite functor
Mod(€) < Stoneg’ Z, Set

commutes with filtered colimits.

(d) For every elementary morphism f: M — N in Mod(Q), we have an equalizer diagram
F(M)— Z(N) = [[Z(P)
where the product is taken over all commutative diagrams

MLN=P
in Mod(C).

Our goal in this lecture is to explain what additional conditions need to be satisfied for the functor .# to
belong to the essential image of the embedding € < Fun(Stoneg”, Set). This embedding is easy to describe:
to an object C' € €, it associates the functor

Stoney” — Set (X,0x) — O)C((X)a

which corresponds under the equivalence Stoney ~ Pro“P(€)°P C Fun(€,S8et) to the evaluation functor
F +— F(C). In the last lecture, we noted that the category Pro"?(C) admits small coproducts, which are
computed as (pointwise) products in the functor category Fun(€, 8et). It follows that if . : Stoney” — Set
is given by evaluation at an object C' € C, then it satisfies the following stronger version of condition (a):



(a*) The functor & carries (possibly infinite) coproducts in Stonee to products in the category of sets.

We will show that, conversely, a functor .# satisfying (a™) together with conditions (b), (¢), and (d) of
Proposition 1 belongs to the essential image of C < Fun(Stoney ,Set). Moreover, it suffices to check (a™)
in a restricted class of examples.

Theorem 2. Let F : Stonel” — Set be a functor which satisfies the conditions of Proposition 1, so that F
is isomorphic to the image of some object F o € Shv(C). The following conditions are equivalent:

(1) The sheaf Fo € Shv(C) is representable by an object C € C.
(2) The functor F satisfies condition (a™) above.
(3) The functor F satisfies the following weaker version of (a™):

(a") For every collection of models {M; € Mod(€)}cr, the canonical map

F(i}, M) = [[ 7 i}, M)

i€l icl
is a bijection.

The implication (1) = (2) was noted above, and the implication (2) = (3) is immediate. We will complete
the proof by showing that (3) = (1). For this, we will need a variant of Deligne’s completeness theorem.

Notation 3. Recall that every model M : € — Set admits an essentially unique extension to a functor
Shv(€) — Set which preserves small colimits and finite limits (that is, to a point of the topos Shv(C)). In

what follows, we will denote this extension by M : Shv(€) — Set.

Lemma 4. Let u : 9 — F be a morphism in the topos Shv(C). If u is not an effective epimorphism, then
there exists a model M of C for which the map M(4) — M(.F) is not surjective.

Proof. Since % admits a covering by representable functors, our assumption that w is not an effective
epimorphism guarantees that we can choose an object C' € € and a morphism he — % for which the
projection map

he Xz g — he

is not an effective epimorphism. For any model M € Mod(€), we have a pullback diagram of sets

—~

M(hc ng)HM(C)

i |

o~ —

M(9) M(F).

Consequently, if the upper horizontal map is not surjective, then the lower horizontal map is also not
surjective. We may therefore replace . by h¢o (and ¢ by the fiber product he X .o ¢) and thereby reduce
to the case where .# is representable by an object C' € C.

Choose an effective epimorphism u : P — C in Pro(C), where P is weakly projective. Under the
equivalence Pro™?(C) ~ Stonee, we can identify P with an object (X, 0x) € Stonee. Moreover, the map u
determines a global section s of Og(X). For each point z € X, let us regard Ox , as a model of €, so that
s determines an element s, € O)C(’z. Assume, for a contradiction, that each of the maps

6X,J:(gg) — 6X,a:(hC) = o)C(,m

is surjective. Then each s, can be lifted to an element s, € 6)(;,;(54) Choose a covering {hc, = Y}ier
in the topos Shv(€). Then, for each point € X, we can choose an index i(z) € I such that s, lifts to a



point t: € 6X,x(hci(m)

te O)C{(” (U(z)). Shrinking U(z) if necessary, we may assume that the image of t in O (U(z)) agrees with
the restriction sy (s).

Note that the open sets {U(x)}.cx cover the topological space X. Since X is compact, we can choose
a finite collection of points z1,xs,...,2, € X for which the open sets U(x1),...,U(z,) cover X. By

Ci(e,
construction, each restriction S\U(x,-) can be lifted to a section of OX( 7 over the open set U(z;). It follows

that s is a global section of the subsheaf 0% C 0%, where Cy = Im([] C(z;) — C). Our assumption that
u is an effective epimorphism then shows that we must have Cy = C, contradicting our assumption that the
map 4 — h¢ is not an effective epimorphism. O

) ~ Oi:) Choose an open set U(z) C X containing z such that 3, can be lifted to

Proof of Theorem 2. Let .7 : Stonel” — Set be a functor which satisfies the conditions of Proposition 1, so
that .# arises from a sheaf .#, € Shv(C). Assume further that .% satisfies condition (a’). We wish to prove
that % belongs to the essential image of the Yoneda embedding € < Shv(€). Since C is a pretopos, the
sheaf .7 € Shv(@) is representable by an object of € if and only if it is quasi-compact and quasi-separated.

We first show that .% is quasi-compact. Choose a collection {u; : he, — Fo}ier of representatives
for all maps from representable sheaves to % (. Since .# is not quasi-compact, none of these maps is an
effective epimorphism. For each index i € I, we can use Lemma 4 to choose a model M; and a point
1, € F({i}, M;) which does not belong to the image of the map M;(C;) — M;(Fo) = F({i}, M;). Set
(X,0x) = ;e ({i}, M;), where the coproduct is formed in the category Stonee. Using condition (a'),
we see that the system {n;}ic; can be lifted (uniquely) to a point n € #(X,0x) under the bijection
F(X,0x) = [Lies 7 ({i}, M). ~

For each point = € X, let 7, denote the image of n in F ({z}, 0x,z) ~ Ox »(F(). Then there exists some

i(x) € I such that 7, can be lifted to an element 77, € GXJ (he o~ O)C{(;) Choose a clopen open set U(x)

containing = and lift of 7, to some s, € O)C(“” (U(z)). Let 5, denote the image of s, in . (U(x), Ox |y())-

By construction, 5, and n have the same image in .#({z},Ox ;). It follows from (b) that we can assume,
after shrinking U(x) if necessary, that 5, = 1|y (qg)-

Since X is compact, we can choose finitely many points z1, . . ., 2, for which the open sets U(x1),...,U(x,)
cover X. Then the map

i(:))

(Wigay) - Uitan)) © (hey,, Lo+ Whey, = Fo

can be identified with u; : hg, — % for some j € I. Let y denote the image of j in X = I (corresponding to
the principal ultrafilter associated to j). Then we have y € U(z) for some x € {z1,...,x,}. By construction,
it follows that 7|y (,) can be lifted to the point s, € O)C{(“') (U(z)), so that the stalk 5, belongs to the image

of the map
Ci(a a N
OX,(ZJ) = Ova(hCi(a;)) - OX,y(g\O)

determined by the map u;(,) : hey(,, — Z . However, the map u;(,) factors through u; : hc, — F, so that
7y also belongs to the image of the map

0%, = M;(C)) = Ox,(Fo),
contradicting our choice of M;. This completes the proof that % is quasi-compact.

We now complete the proof by showing that % is quasi-separated. Choose a pair of quasi-compact
objects 9, 7 € ShV(G)/ Z,; we wish to show that the fiber product ¥ x #, 5 is quasi-compact. Covering
¢ and S by representable sheaves, we may assume that ¢, and 7, are representable by objects of C. Let
¢ and . denote the images of ¢y and ' in the category Fun(Stoneg’,8et). Then ¢ and 7 satisfy
condition (a’) (even condition (a™)), so that & x & S also satisfies condition (a’). The preceding argument
then shows that ¥ x #, # is quasi-compact, as desired. O



